Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioact Mater ; 42: 226-240, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39285915

RESUMO

Hematopoietic stem cell transplantation (HSCT) is extensively employed in the treatment of hematological malignancies but is markedly constrained by the paucity of hematopoietic stem/progenitor cells (HSPCs). Recent studies have found that marrow adipose tissue (MAT) acts on hematopoiesis through complicated mechanisms. Therefore, the osteo-organoids fabricated in vivo using biomaterials loaded with recombinant human bone morphogenetic protein 2 (rhBMP-2) have been used as models of MAT for our research. To obtain sufficient amounts of therapeutic HSPCs and healthy MAT, we have developed amphiphilic chitosan (AC)-gelatin as carriers of rhBMP-2 to the regulate type conversion of adipose tissue and trap hematopoietic growth factors. Unlike medicine interventions or cell therapies, the traps based on AC not only attenuate the occupancy of adipocytes within the hematopoietic microenvironment while preserving stem cell factor concentrations, but also improve marrow metabolism by promoting MAT browning. In conclusion, this approach increases the proportion of HSPCs in osteo-organoids, and optimizes the composition and metabolic status of MAT. These findings furnish an experimental basis for regulating hematopoiesis in vivo through materials that promote the development of autologous HSPCs. Additionally, this approach presents a theoretical model of rapid adipogenesis for the study of adipose-related pathologies and potential pharmacological targets.

2.
Adv Sci (Weinh) ; 10(24): e2301592, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357138

RESUMO

Hematopoietic stem cell transplantation (HSCT) is a well-established method for a variety of acquired and congenital diseases. However, the limited number and sources of therapeutic hematopoietic stem/progenitor cells (HSPCs) hinder the further application of HSCT. A BMP-2 triggered in vivo osteo-organoid that is previously reported, serves as a kind of stem cell biogenerator, for obtaining therapeutic HSPCs via activating the residual regenerative capacity of mammals using bioactive biomaterials. Here, it is demonstrated that targeting the homing signaling of HSPCs elevates the proportions and biological functions of HSPCs in the in vivo osteo-organoid. Notably, it is identified that sulfonated chito-oligosaccharide, a degradation product of sulfonated chitosan, specifically elevates the expression of endothelial protein C receptor on HSPCs and vascular cell adhesion molecule-1 on macrophages in the in vivo osteo-organoid, ultimately leading to the production of adequate therapeutic HSPCs. This in vivo osteo-organoid approach has the potential to provide an alternative HSPCs source for HSCT and benefits more patients.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Sulfatos , Animais , Humanos , Sulfatos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Polissacarídeos/metabolismo , Mamíferos
3.
Sci Adv ; 9(1): eadd1541, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608118

RESUMO

Cell therapies and regenerative medicine interventions require an adequate source of therapeutic cells. Here, we demonstrate that constructing in vivo osteo-organoids by implanting bone morphogenetic protein-2-loaded scaffolds into the internal muscle pocket near the femur of mice supports the growth and subsequent harvest of therapeutically useful cells including hematopoietic stem/progenitor cells (HSPCs), mesenchymal stem cells (MSCs), lymphocytes, and myeloid cells. Profiling of the in vivo osteo-organoid maturation process delineated three stages-fibroproliferation, osteochondral differentiation, and marrow generation-each of which entailed obvious changes in the organoid structure and cell type distribution. The MSCs harvested from the osteochondral differentiation stage mitigated carbon tetrachloride (CCl4)-induced chronic liver fibrosis in mice, while HSPCs and immune cells harvested during the marrow generation stage rapidly and effectively reconstituted the impaired peripheral and solid immune organs of irradiated mice. These findings demonstrate the therapeutic potentials of in vivo osteo-organoid-derived cells in cell therapies.


Assuntos
Células-Tronco Hematopoéticas , Fígado , Animais , Camundongos , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Organoides
4.
Biomater Transl ; 4(4): 270-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38282704

RESUMO

Bone marrow-derived mesenchymal stem cells (BM-MSCs) play a crucial role in stem cell therapy and are extensively used in regenerative medicine research. However, current methods for harvesting BM-MSCs present challenges, including a low yield of primary cells, long time of in vitro expansion, and diminished differentiation capability after passaging. Meanwhile mesenchymal stem cells (MSCs) recovered from cell banks also face issues like toxic effects of cryopreservation media. In this study, we provide a detailed protocol for the isolation and evaluation of MSCs derived from in vivo osteo-organoids, presenting an alternative to autologous MSCs. We used recombinant human bone morphogenetic protein 2-loaded gelatin sponge scaffolds to construct in vivo osteo-organoids, which were stable sources of MSCs with large quantity, high purity, and strong stemness. Compared with protocols using bone marrow, our protocol can obtain large numbers of high-purity MSCs in a shorter time (6 days vs. 12 days for obtaining passage 1 MSCs) while maintaining higher stemness. Notably, we found that the in vivo osteo-organoid-derived MSCs exhibited stronger anti-replicative senescence capacity during passage and amplification, compared to BM-MSCs. The use of osteo-organoid-derived MSCs addresses the conflict between the limitations of autologous cells and the risks associated with allogeneic sources in stem cell transplantation. Consequently, our protocol emerges as a superior alternative for both stem cell research and tissue engineering.

5.
Bone Res ; 10(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34975148

RESUMO

The periosteum, a highly vascularized thin tissue, has excellent osteogenic and bone regenerative abilities. The generation of periosteum-mimicking tissue has become a novel strategy for bone defect repair and regeneration, especially in critical-sized bone defects caused by trauma and bone tumor resection. Here, we utilized a bone morphogenetic protein-2 (BMP-2)-loaded scaffold to create periosteum-like tissue (PT) in vivo, mimicking the mesenchymal condensation during native long bone development. We found that BMP-2-induced endochondral ossification plays an indispensable role in the construction of PTs. Moreover, we confirmed that BMP-2-induced PTs exhibit a similar architecture to the periosteum and harbor abundant functional periosteum-like tissue-derived cells (PTDCs), blood vessels, and osteochondral progenitor cells. Interestingly, we found that the addition of chondroitin sulfate (CS), an essential component of the extracellular matrix (ECM), could further increase the abundance and enhance the function of recruited PTDCs from the PTs and finally increase the regenerative capacity of the PTs in autologous transplantation assays, even in old mice. This novel biomimetic strategy for generating PT through in vivo endochondral ossification deserves further clinical translation.

6.
Biomaterials ; 258: 120284, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798743

RESUMO

Critical-sized bone defects and nonunions following fracture are common among elderly patients and severely reduce the quality of life. Dysfunctional senescent endothelial and mesenchymal stromal cells (MSCs) inhibit bone defect repair. Here we provide a method to obtain surrogate vascularized juvenile bone by subcutaneous implantation of recombinant human bone morphogenic protein-2 (rhBMP-2)-loaded absorbable gelatin scaffolds. RhBMP-2-induced ossicles showed fewer senenscent MSCs whereas much more type H blood vessels (strongly positive for CD31 and endomucin (Emcn)) and osteoprogenitor cells than native bone (femur and tibiae) even in old mice. Treatment with this juvenile ossicles improved the regenerative capacity in critical-sized cranial defects versus standard treatment in both young and old mice. Furthermore, ossicles with custom size shape were obtained by 3D-printing for irregular bone defects repair. These customizable juvenile ossicles developed in aged individuals provide an alternative to resecting native bone in autologous bone transplantation, with superior regenerative efficacy in elderly patients due to their juvenile phenotype.


Assuntos
Células-Tronco Mesenquimais , Qualidade de Vida , Idoso , Animais , Proteína Morfogenética Óssea 2 , Regeneração Óssea , Transplante Ósseo , Fêmur , Humanos , Camundongos , Impressão Tridimensional , Proteínas Recombinantes , Fator de Crescimento Transformador beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA