Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 35(39): e2302924, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37262926

RESUMO

Short-wavelength infrared (SWIR) organic light-emitting diodes (OLEDs) have attracted great interest due to their potential applications in biological imaging, infrared lighting, optical communication, environmental monitoring, and surveillance. Due to an intrinsic limitation posed by the energy-gap law, achieving high-brightness in SWIR OLEDs remains a challenge. Herein, the study reports the use of novel A-D-A'-D-A type small molecules NTQ and BTQ for high-performance SWIR OLEDs. Benefiting from multiple D-A effect in conjugated skeleton, the small molecules NTQ and BTQ exhibit narrow optical gaps of 1.23 and 1.13 eV, respectively. SWIR electroluminescence (EL) emission from OLEDs based on NTQ and BTQ is achieved, with emission peaks at 1140 and 1175 nm, respectively. Not only owing to a negligible efficiency roll-off across the full range of applied current density but also the ability to afford a high operation current density of 5200 mA cm-2 , the resultant SWIR OLEDs based on NTQ exhibit a maximal radiant exitance of =1.12 mW cm-2 . Furthermore, the NTQ-based OLEDs also possess sub-gap turn-on voltage of 0.85 V, which is close to the physical limits derived from the generalized Kirchhoff and Planck equation. This work demonstrates that A-D-A'-D-A type small molecules offer significant promise for NIR/SWIR emitting material innovations.

2.
ACS Appl Mater Interfaces ; 13(48): 57654-57663, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34841874

RESUMO

Molecular orientation in polymer solar cells (PSCs) is a critical subject of investigation that promotes the quality of bulk heterojunction morphology and power conversion efficiency (PCE). Herein, the intrinsic polymer orientation transition can be found upon delicate control over the branching point position of the irregular alkoxy side chain in difluoroquinoxaline-thiophene-based conjugated polymers. Three polymers with branching points at the third, fourth, and fifth positions away from the backbone were synthesized and abbreviated as PHT3, PHT4, and PHT5, respectively. Temperature-dependent absorption behavior manifests the polymer aggregation ability in the order of PHT3 < PHT4 < PHT5. Surprisingly, the polymer orientation transition from typical face-on to edge-on emerged between PHT4 and PHT5, as evidenced by X-ray-scattering analysis. The enhanced face-on crystallinity of PHT4 endowed the o-xylene-processed PHT4:IT-4Cl-based devices with the highest PCE of 13.40%. For PHT5 with stronger aggregation, the related o-xylene-processed PSCs still showed a good PCE of 12.66%. Our results demonstrate that a delicate polymer orientation transition could be realized through a precisely controlled strategy of the side chain, yielding green-solvent-processed high-performance PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA