Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1131610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063301

RESUMO

Background: Sunitinib is the main target drug for clear cell renal cell carcinoma. However, the effect of sunitinib is often limited by acquired drug resistance. Methods: The open-accessed data used in this study were obtained from different online public databases, which were analyzed using the R software. The RNA level of specific genes was detected using quantitative Real-Time PCR. Sunitinib-resistant cell lines were constructed based on protocol get from the previous study. Colony formation and Cell Counting Kit-8 assays were applied to detect cell proliferation ability. Results: In this study, through publicly available data and high-quality analysis, we deeply explored the potential biological mechanisms that affect the resistance of sunitinib. Detailed, data from GSE64052, GSE76068 and The Cancer Genome Atlas were extracted. We identified the IFITM1, IL6, MX2, PCOLCE2, RSAD2 and SLC2A3 were associated with sunitinib resistance. Single-cell analysis, prognosis analysis and m6A regulatory network were conducted to investigate their role. Moreover, the MX2 was selected for further analysis, including its biological role and effect on the ccRCC microenvironment. Interestingly, we noticed that MX2 might be an immune-related gene that could affect the response rate of immunotherapy. Then, in vitro experiments validated the overexpression of MX2 in sunitinib-resistance cells. Colony formation assay indicated that the knockdown of MX2 could remarkably inhibit the proliferation ability of 786-O-Res and Caki-1-Res when exposed to sunitinib. Conclusion: In summary, through publicly available data and high-quality analysis, we deeply explored the potential biological mechanisms that affect the resistance of sunitinib. MX2 was selected for further analysis, including its biological role and effect on the ccRCC microenvironment. Finally, in vitro experiments were used to validate its role in ccRCC.

2.
Ann Transl Med ; 10(4): 225, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280431

RESUMO

Background: Aminophylline is widely used for the treatment of asthma, but the therapeutic dose is very close to the toxic dose, which makes this drug prone to accumulation poisoning. In the present study, we explored whether the Chinese herbal component, Praeruptorin E (PE), enhances anti-asthma efficacy and prevents the toxicity of aminophylline. Methods: First, an ovalbumin (OVA)-induced mouse model of asthma, immunohistochemistry, pathological staining, and bronchoalveolar lavage fluid (BALF) were used to detect the lung condition of asthmatic mice. The content of Th2 cytokines in serum was measured by enzyme-linked immunosorbent assay (ELISA), and the expression of related proteins was detected by Western blotting and immunofluorescence. Concentrations of theophylline and its metabolites in rat serum were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). siRNA transfection and chromatin immunoprecipitation (ChIP) were used to investigate the mechanism of PE. Results: PE was found to synergize with aminophylline to reduce the infiltration of inflammatory cells, collagen deposition, and mucus hyperplasia in the lungs of asthmatic mice. It inhibited the expression of Th2 cytokines, interleukin (IL)-4, IL-5, and IL-13; promoted lung tissue repair; and reduced the toxic effect of aminophylline on the heart. Moreover, LC-MS/MS analysis showed that PE reduced the plasma concentration of the parent theophylline and its metabolite 1,3-dimethyluric acid (1,3-DMU). PE facilitated aminophylline's suppression of nuclear factor-κB (NF-κB), and increased the expression of the xenobiotic nuclear receptor pregnane X receptor (PXR) and its primary target gene, CYP3A11 [this is the mouse homolog of cytochrome P450 3A (CYP3A)] in the asthmatic mouse liver and in the L-02 human fetal hepatocyte cell culture model. In addition, the ChIP assay revealed that PE attenuated the binding of NF-κB to the promoter region of the PXR gene and prevented the suppression of PXR gene expression by NF-κB. Conclusions: PE has a dual function in enhancing the immune regulation and anti-inflammatory effects of theophylline, as well as preventing theophylline toxicity by targeting the NF-κB/PXR/CYP3A4 axis. PE is a promising herbal medicine that will benefit asthmatics taking theophylline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA