Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 265(Pt B): 114594, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32504974

RESUMO

Exposure to polycyclic aromatic hydrocarbons (PAHs) during pregnancy is a risk factor for adverse neurobehavioral development outcomes. Mitochondrial DNA are sensitive to environmental toxicants due to the limited ability of repairing. The change of mitochondrial DNA copy number (mtDNAcn) might be a biologically mechanism linking PAH exposure and children's neurobehavioral impairment. Our aims are to explore whether PAH metabolites in maternal urine were associated with children's neurobehavioral development at 2 years old and umbilical cord blood mtDNAcn, and whether mtDNAcn was a mediator of PAH-related neurobehavioral development. We included 158 non-smoking pregnant women from Taiyuan City, Shanxi Province. Maternal urinary eleven PAH metabolites were detected by high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). MtDNAcn in cord blood was detected by real time quantitative polymerase chain reaction (RT-PCR). Children's neurodevelopment was measured by Gesell Developmental Schedules (GDS) when children were two years age. Generalized linear models and restricted cubic spline models were applied to assess the relationships between PAH metabolites in maternal urine and GDS scores and mtDNAcn. A mediation analysis was also conducted. Generalized linear models showed the relationships of sum of PAH metabolites (Σ-OHPAHs) in maternal urine with decreased motor score, and Σ-OHPAHs with increased mtDNAcn (p for trend < 0.05). Urinary levels of Ln (Σ-OHPAHs) increased one unit was related to a 2.08 decreased in motor scores, and Ln (Σ-OHPAHs) increased one unit was related to 0.15 increased in mtDNAcn. Mediation analysis did not find mtDNAcn can be a mediator between PAH metabolites and neurobehavioral development. Our results suggest that prenatal exposure to PAH decreased children's neurobehavioral development scores and increased mtDNAcn. And reducing exposure to PAH during pregnancy will benefit to improving neurobehavioral development in children. In our present cohort study, sum of PAH metabolites in urine of pregnant women were related with motor score and were positively associated with umbilical cord blood mtDNA copy number.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Efeitos Tardios da Exposição Pré-Natal , Criança , Pré-Escolar , Cidades , Estudos de Coortes , Variações do Número de Cópias de DNA , DNA Mitocondrial , Feminino , Sangue Fetal , Humanos , Gravidez , Espectrometria de Massas em Tandem
2.
Environ Res ; 174: 105-113, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31055168

RESUMO

BACKGROUND: Prenatal exposure to polycyclic aromatic hydrocarbon (PAH) is a potential risk factor for child neurobehavioral development. Telomere length (TL) has important implications for health over the life course. OBJECTIVE: In this study, we aimed to investigate whether prenatal urinary PAH metabolites were associated with adverse neonatal neurobehavioral development and altered cord blood TL and to explore whether the change of TL was a predictor of neonatal neurobehavioral development. METHOD: We enrolled 283 nonsmoking pregnant women in Taiyuan city. Eleven PAH metabolites were measured in maternal urine samples. TL in cord blood was measured by real time quantitative polymerase chain reaction. Neonatal behavioral neurological assessment (NBNA) tests were conducted when the infants were three days old. Multiple linear regression models were used to analyze the associations of maternal urinary PAH metabolites with NBNA scores and cord blood TL, and restricted cubic spline models were further used to examine the shapes of dose-response relationships. A mediation analysis was also conducted. RESULT: We observed dose-response associations of maternal urinary 2-hydroxyfluorene (2-OHFlu) and 2-hydroxyphenanthrene (2-OH Phe) with decreased active tone scores, sum of NBNA scores, and cord blood TL (P for trend<0.05). Each 1 unit increase in urinary levels of Ln (2-OH Flu) or Ln (2-OH Phe) was associated with a 0.092 or 0.135 decrease in the active tone scores and a 0.174 or 0.199 decrease in the sum of NBNA scores. Mediation analysis showed TL could explained 21.74% of the effect of sum of NBNA scores change related to prenatal exposure to 2-OH Phe (P for mediator = 0.047). CONCLUSION: Our data indicates maternal urinary specific PAH metabolites are inversely associated with neonatal neurobehavioral development and cord blood TL. TL mediates the associations of 2-OH Phe with neonatal neurobehavioral development and partly explains the effect of 2-OH Phe on neonatal neurobehavioral development.


Assuntos
Desenvolvimento Infantil , Poluentes Ambientais/metabolismo , Exposição Materna/estatística & dados numéricos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Telômero , Criança , Cidades , Feminino , Sangue Fetal , Humanos , Lactente , Recém-Nascido , Gravidez
3.
Environ Health ; 17(1): 91, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572877

RESUMO

BACKGROUND: Naphthalene is the simplest polycyclic aromatic hydrocarbon (PAH). It is easily emitted into the atmosphere, posing a significant risk to human health. However, limited studies have described the impact of naphthalene exposure on birth outcomes. In this study, we investigated the association between the maternal urinary metabolites of naphthalene, 2-hydroxynaphthalene (2-OH NAP), and birth outcomes. METHOD: In the present study, four urinary PAH metabolites were measured in 263 pregnant women during late pregnancy. Multiple linear regression analysis was used to analyze the relationship between the concentrations of 2-OH NAP and birth outcomes, and restricted cubic spline models were further used to examine the shapes of the dose-response association. RESULT: General linear models showed that prenatal urinary 2-OH NAP was associated with lower birth weight (BW) (- 4.38% for the high vs. low exposure group of 2-OH NAP; p for trend = 0.049) and higher cephalization index (CI) (4.30% for the high vs. low exposure group of 2-OH NAP; p for trend = 0.038). These associations were linear and significant when 2-OH NAP was modeled as a continuous variable in restricted cubic spline models (P linear = 0.0293 for 2-OH NAP and BW; P linear = 0.0326 for 2-OH NAP and CI). Multiple linear regression data indicated that each 1 ln-unit increase in 2-OH NAP was significantly associated with a 2.09 g/cm increase in the CI. The associations among 2-OH NAP, BW, and CI were also observed in a subset of participants residing close to arterial traffic. CONCLUSION: Our data indicated that prenatal exposure to naphthalene had an adverse effect on fetal birth outcomes, especially the brain development index. Reduced exposure to naphthalene may improve newborn health outcomes. In Taiyuan, naphthalene may result from traffic pollution.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Recém-Nascido de Baixo Peso , Exposição Materna/efeitos adversos , Naftalenos/efeitos adversos , Naftóis/urina , Gravidez/urina , Adulto , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , China , Monitoramento Ambiental , Feminino , Humanos , Recém-Nascido , Masculino , Troca Materno-Fetal , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA