Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(4): 5655-5667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123779

RESUMO

The combined role of ground cover management in controlling soil erosion and nutrient loss from new orchards is still less understood. In this study, four ground cover management practices, orchard with grass cover (OG), orchard with interplant cover (OI), orchard with straw cover (OS), and orchard with bare ground (OB), were designed to identify their impacts on soil erosion and associated carbon-nitrogen-phosphorus loss in new orchards by rainfall simulation tests with rainfall intensities of 60, 90, and 120 mm h-1 and 90 min rainfall duration. The results showed that OS had the lowest surface flow coefficient (6.6%) and highest subsurface flow coefficient (32.5%). The highest soil loss rate occurred in the OB plot (65.4 g m-2 min-1), and the lowest soil loss rate occurred in the OS plot (0.5 g m-2 min-1). OS plot showed better effectiveness in improving soil erosion. However, the increased infiltration capacity was facilitated in terms of causing non-point source pollution. The C-N-P ratios of surface flow in different cover measures (OB, OI, OG, and OS) were 1.4:1.2:0.9:1, 1.8:1.7:1.2:1, and 2.3:1.9:1.2:1, respectively. The ratios of sediment in different cover measures were 7.3:9:2.3:1, 2:1.5:1.2:1, and 1.2:1:0.8:0.7, respectively. Cover management plots play an active role in reducing nutrient loss in surface flow and sediment, but the increased infiltration in covered management plots is associated with the risk of groundwater contamination in subsurface flow. The C-N-P ratios of subsurface flow in OB and covered managed plots (OI, OG, and OS) were 1:3.3:1.6:2.7, 1:1.5:2.2:2.4 and 1:1.2:1.5:1.3, respectively. Therefore, when managing the phenomenon of soil erosion through ground cover measures, attention should also be focused on the function of cover measures in regulating non-point source pollution underground, such as subsurface flow. This research recommends a combination of cover management measures to further mitigate erosion and the risk of groundwater contamination.


Assuntos
Nitrogênio , Fósforo , Nitrogênio/análise , Carbono , Solo , Poaceae , Chuva
2.
Ying Yong Sheng Tai Xue Bao ; 34(2): 377-386, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36803715

RESUMO

We selected a typical dolomite slope and set up three micro-plots (projection length was 2 m, width was 1.2 m) on the upper, middle, and lower slopes to analyze the variations of soil losses and the key influencing factors during two hydrological years (2020-2021). The results showed that soil losses at different slope positions on dolomite slopes followed an order of semi-alfisol in lower slopes (386 g·m-2·a-1) > inceptisol in middle slopes (77 g·m-2·a-1) > entisol in upper slopes (48 g·m-2·a-1). Downward along the slope, the positive correlation gradually increased between soil losses and surface soil water content, as well as rainfall, while it gradually decreased with the maximum 30 min rainfall intensity. The meteorological factors affecting soil erosion on the upper, middle and lower slopes were the maximum 30 min rainfall intensity, precipitation, average rainfall intensity and surface soil water content, respectively. Soil erosion processes on upper slopes were mainly driven by raindrop splash erosion and infiltration-excess runoff, while that on lower slopes were mainly driven by saturation-excess runoff. The volume ratio of fine soil in the soil profile was the key factor of soil losses on dolomite slopes, with an explanation rate of 93.7%. The lower slope was the key site of soil erosion in the dolomite slopes. Subsequent rock desertification management should be based on the erosion mechanism of different slope positions, while control measures should be arranged according to local conditions.


Assuntos
Sedimentos Geológicos , Solo , Chuva , Movimentos da Água , Água , China
3.
Ying Yong Sheng Tai Xue Bao ; 34(2): 387-395, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36803716

RESUMO

In an experiment with alternating dry and wet conditions of soil in cultivated land, orchards and forest lands with limestone and dolomite in karst peak depression, combined with digital image processing technology, we investigated the development law of soil surface cracks under alternating dry and wet condition. The results showed that with the alternation of wet and dry, the average width of cracks decreased at a fast-slow-slower rate, with an order of limestone > dolomite under the same land use, and orchard > cultivated land > forest soil under the same soil-forming parent rock. In the first four dry and wet alternations, the degrees of soil fragmentation and connectivity were higher in dolomite development than in limestone, with significant differences in fracture development rose diagrams. In the subsequent cycles, soil fragmentation of most samples increased, the difference dominated by parent rock gradually decreased, the crack development rose diagram converged, and the connectivity showed the pattern of forest land > orchard > cultivated land. After the fourth cycle, the alternations of dry and wet seriously damaged soil structure. The physical and chemical properties of capillary porosity and non-capillary tube porosity were dominant in the development of cracks before that, but it was more dependent on the organic matter content and the sand composition after that.


Assuntos
Depressão , Solo , Solo/química , Florestas , Carbonato de Cálcio , China
4.
Ecotoxicol Environ Saf ; 249: 114452, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321671

RESUMO

Microcystis aeruginosa is the competitively dominant algal species in eutrophic waters and poses a serious threat to the aquatic ecological environment. To investigate the effects of eucalyptus tannins (TFL) and black water in eucalyptus plantations on M. aeruginosa, this study exposed M. aeruginosa to different concentrations (0 (control), 20, 50, 80, 110, and 140 mg L-1) of tannic acid (TA; hydrolyzed tannins, HT; reagent tannin), epigallocatechin gallate (EGCG; condensed tannins, CT; reagent tannin), eucalyptus tannins (TFL, complex tannin) and mixed TFL + Fe3+ solution (tannin: Fe3+ molar ratio = 1:10). The cell density, chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, malondialdehyde (MDA) and soluble protein (SP) contents of algae under tannin stress were determined, and the algal cell density treated with under the combination of TFL and Fe3+ was determined. The results showed a reduction in the Chl-a content of algal cells, which inhibited photosynthesis; leading to membrane lipid peroxidation; and the complexation of soluble proteins resulting in blocked protein synthesis were the main mechanisms by which tannins inhibited the growth of M. aeruginosa. TFL achieved the same inhibition of algal cells as the tannin reagent at the same concentration. At 4 d, TFL at 80 mg L-1 and above could achieve more than 54.87 % algal density inhibition. The inhibition rate of 80 mg L-1 and above TFL + Fe3+ on algal density was more than 75 %, indicating that TFL + Fe3+ had a stronger inhibitory effect on algal density. The results may facilitate the resource utilization of eucalyptus harvesting residues, explorations of the potential application of eucalyptus tannins in the control of M. aeruginosa, and provide new ideas for ecological algal inhibition in eucalyptus plantations.


Assuntos
Eucalyptus , Microcystis , Polifenóis , Taninos/metabolismo , Clorofila A/metabolismo
5.
Sci Total Environ ; 807(Pt 3): 151000, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656574

RESUMO

Soil aggregates constitute the basic units of the soil structure, and soil aggregate stability is an important indicator of soil erodibility. Successive planting of fast-growing plantations can change the erosion resistance of the soil under rainfall conditions. Pure Eucalyptus plantations in this study (first- to fourth-generations, i.e., I, II, III, and IV, respectively) were investigated. The stability and abrasion characteristics of soil aggregates were analyzed by the wet sieving method, the Le Bissonnais (LB) method and a slope flow scouring experiment. With an increase in successive generations of Eucalyptus, the soil bulk density increased, and the saturated water content, porosity, organic matter and Iron, Aluminum and Manganese (Fe-Al-Mn) oxide contents decreased. Additionally, the wet sieving results showed that the first- and second-generations had higher macroaggregate content than the fourth generation. The mean weight diameter (MWD) values decreased with the number of planting significantly. Based on fast wetting (FW), slow wetting (SW) and mechanical breakdown by shaking after pre-wetting (WS), the aggregate stability was ranked in a decreasing order as MWDSW > MWDWS > MWDFW. The relative dissipation index (RSI) and mechanical crushing index (RMI) increased with increasing number of planting generations. Aggregate stability was significantly negatively correlated with the soil bulk density and was significantly positively correlated with the organic matter and Fe-Mn oxide contents. The extent of aggregate abrasion (Wr/Wi) values and MWD values decreased with increasing scouring distance and slope gradient during the transport process. The α and Wr/Wi values of the scoured aggregates were significantly correlated with aggregate stability. Hence, with successive planting of Eucalyptus, the soil aggregate stability decreased, and the soil was prone to erosion when subjected to slope flow.


Assuntos
Eucalyptus , China , Solo
6.
Ecotoxicol Environ Saf ; 229: 113077, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915221

RESUMO

Fish ponds polluted by the black water of eucalyptus forests (formed by the complexation of eucalyptus tannins with Fe3+) have experienced fish deaths. However, the toxicity of the components of black water is still unclear. To study the acute toxicities of eucalyptus leachate tannins to fish, their changes in the presence of Fe3+, and the underlying mechanisms, the static bioassay test method was adopted for acute exposure testing of zebrafish. Zebrafish were exposed to three kinds of tannins, namely, tannic acid (TA), epigallocatechin gallate (EGCG) and tannins from fresh eucalyptus leaf leacheate (TFL), and to solutions of these tannins with different molar ratios of Fe3+, under both no-aeration and aeration conditions. The results showed that the 48 h LC50 values of TA, EGCG and TFL were respectively 92, 47, and 186 mg·L-1, under no aeration, and 171, 86, and 452 mg·L-1 under aeration. When Fe3+ at 2, 1, and 6 times the molar amount of tannin was added to LC100 solutions of TA, EGCG and TFL, zebrafish mortality in 24 h was reduced to 0-33%. Acute fish death in eucalyptus plantation areas is related to high concentrations of eucalyptus tannins in the water. However, with increasing dissolved oxygen and Fe3+ levels, the acute toxicity of tannins to fish can be reduced. Thus, the black water in eucalyptus plantation areas reflects a water quality phenomenon that reduces the acute toxicity of eucalyptus tannins to fish. The mechanism of tannin toxicity to fish may be related to the impairment of oxygen delivery by fish blood, but the mechanism needs further study. These results provide a scientific basis for the prevention and control of fish suffering from acute eucalyptus tannin poisoning in eucalyptus plantation areas and for the protection of water resources.


Assuntos
Eucalyptus , Taninos , Animais , Lagoas , Taninos/toxicidade , Qualidade da Água , Peixe-Zebra
7.
Ying Yong Sheng Tai Xue Bao ; 31(11): 3647-3656, 2020 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-33300714

RESUMO

We examined the stability of soil aggregates in five typical plantations, i.e., Eucalyptus urophylla × E. grandis plantation, Cunninghamia lanceolata plantation, Pinus massoniana plantation, Mytilaria laosensis plantation and Castanopsis hystrix plantation, in the south subtropical China by the Elliott wet sieving and Le Bissonnais (LB) methods. The results showed that the content of water stability aggregate (WR>0.25) was more than 62.2% after wet sieving. The mean weight diameter (MWD) and geometric mean diameter (GMD) of aggregates were 1.58-3.71 mm and 0.57-2.02 mm, respectively, which were the largest in C. lanceolata plantation and the smallest in E. urophylla × E. grandis plantation. Percentage of aggregate destruction (PAD) of five kinds of plantations ranged from 4.6% to 31.5%. The transfer matrix method was used to evaluate the soil aggregates, with the aggregate stability index (ASI) following the order of C. lanceolata plantation > C. hystrix plantation > M. laosensis plantation > P. massoniana plantation > E. urophylla × E. grandis plantation. Under the three treatments of LB method, the FW treatment was the most destructive to the stability of soil aggregates, indicating that dissipation played a major role in the disintegration of soil aggregates. The WS treatment had the least damage to the aggregates. The effect of slow wetting (SW) treatment was between the fast wetting (FW) and wet stirring (WS). Both the MWD and GMD values followed the order of WS>SW>FW, which gradually decreased with the increases of soil depth. The GMD value of aggregates under FW treatment by LB method of five plantations was significantly positively correlated with ASI, MWD and GMD of wet sieving method, indicating that the traditional wet sieving method had a good correlation with FW treatment and was feasible to determine the stability of soil aggregates in the subtropical red soil. Based on the aggregate stability indices of MWD, GMD, PAD and ASI, C. lanceolata plantation was more conducive to the improvement of soil aggregation level, with more stable soil structure than the other four plantations.


Assuntos
Cunninghamia , Pinus , Carbono/análise , China , Solo
8.
Ying Yong Sheng Tai Xue Bao ; 31(7): 2431-2440, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32715710

RESUMO

Collapsing gully is a common phenomenon of hydraulic-gravity combined soil erosion in granite hilly area of south China. The study aimed to explore the relationship between soil hydraulics pro-perties and erosion mechanism and the intrinsic controlling factors. The active, semi-stable, and stable types of granite collapsing gullies in southeastern Guangxi were selected to examine the spatial variation of soil saturated hydraulic conductivity and identify the influencing factors. Main results were as follows: 1) Soil saturated hydraulic conductivity of collapsing gullies fluctuated on different positions, with the bottom of collapsing wall showing the minimum value, the top of colluvial deposit showing the maximum, and followed by the top of alluvial fan. 2) All the models being selected to model the soil saturated hydraulic conductivity, including Cosby, Compbell, Julià, and Hypre, performed poor. 3) Results of correlation analysis showed that soil saturated hydraulic conductivity was negatively correlated with capillary porosity and clay content, and positively correlated with non-capillary porosity and sand content. 4) Results of path analysis showed that sand content was the most influencing factor in controlling soil saturated hydraulic conductivity of collapsing gullies, followed by non-capillary porosity and soil bulk density, where sand content and non-capillary porosity exerted a positive effect and bulk density exerted a negative one. Our findings will provide theoretical basis for the mechanistic understanding and prevention of collapsing gullies erosion.


Assuntos
Dióxido de Silício , Solo , China , Condutividade Elétrica
9.
Sci Total Environ ; 693: 133393, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31374496

RESUMO

Black runoff occasionally flows from cutover areas of Eucalyptus plantations, polluting rivers and ponds, and resulting in fish death in severe cases. However, the occurrence patterns and environmental impacts of this black water remain unclear. Herein, we analyzed the major characteristics of black water at the occurrence sites, tested the complexation reaction of ground eucalyptus leaves with a solution of Fe3+, and determined the color and absorbance of the complex solution. The results showed that the water was dark blue, with weak acidity and strong light absorbance. The water contained a high level of dissolved organic matter content, while its chemical oxygen demand, total N, total P, NO3--N, and NH4+-N concentrations were significantly higher than those in the stream water from Eucalyptus, Pinus massoniana Lamb., and Cunninghamia lanceolata stands during the growth period. Additionally, the tannic acid concentration in the black water was 1.0 mg L-1 higher than that in the stream water from the Eucalyptus stand. The input of black water increases the concentration of tannic acid and NH4+-N, and the degradation of organic matter consumes dissolved oxygen in downstream ponds, leading to fish deaths. The presence of fresh logging residues and hot, humid weather also enable black water formation. Field investigations and simulation experiments revealed fresh Eucalyptus residues decompose rapidly under high-temperature and rainfall conditions, releasing large amounts of tannic acid, which reacts with Fe3+ to form a dark blue tannic acid­iron complex and results in black water. These results indicate that the rich Fe3+ in runoff may be a key factor in the occurrence of black water. The logging of Eucalyptus plantations during the dry season or on non-rainy days and a reduction in the logging area could prevent the occurrence of black water or mitigate the extent of its environmental hazards.


Assuntos
Eucalyptus , Peixes/fisiologia , Agricultura Florestal/métodos , Lagoas/química , Água/química , Animais , China , Clima , Meio Ambiente , Qualidade da Água
10.
PLoS One ; 13(12): e0209427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596706

RESUMO

Collapsing gully erosion is the main important and specific soil erosion type in the red soil region of tropical and subtropical South China. Knowledge of the soil disintegration characteristics within different weathering profiles (surface layer, red soil layer, sandy soil layer and detritus layer) and its relationships with soil particle size distribution and soil properties is important in understanding the mechanism of the forming process and development of the collapsing gully. In this paper, we conducted an experiment on four collapsing gullies located four counties (Tongcheng County, Gan County, Anxi County and Wuhua County) in the hilly granitic region of southern China. The anti-disintegration ability of the different weathering profiles with two different moisture conditions (the air-dried condition and the natural state condition) were determined by the anti-disintegration index (Kc) and measured by the submerging test. The results show that the coarse particles are higher in the sandy soil layer and the detritus layer of collapsing gully than that in the surface layer and the red soil layer, but the finer particles show the inversed order. The Kc values reduce significantly from the surface layer to the detritus layer. In the surface layer and the red soil layer, the Kc values in the natural state condition are much higher than that in the air-dried condition. The results highlight that, the sandy soil layer and the detritus layer are easily to disintegrate compare with the surface layer and the red soil layer, and in the case of low soil water content, the soil in any layer of collapsing gully is easy to disintegrate. The regression equation shows a very significant and positive relationship between the Kc values and the < 0.002 mm particles contents and the SOM (soil organic matter) (p<0.01), and negative relationship between the Kc values and the contents of other soil particle size. The results revealed that the repulsive force produced by compressed air in the soil exceeds the suction between the soil particles is the predominant factor to soil disintegrate rates in the air-dried state condition. Whereas the soil contained a certain amount of water can reduce the degree of disintegration. The results also indicated that the more contents of the cementation agents (like clay and SOM) in the soil of the different layers of collapsing gully, the higher Kc values (it means the more difficult to disintegrate).


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Solo , Água/química , China , Monitoramento Ambiental , Humanos , Tempo (Meteorologia)
11.
PLoS One ; 12(3): e0173555, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301524

RESUMO

Collapsing gullies are among the most severe soil erosion problems in the tropical and subtropical areas of southern China. However, few studies have examined the relationship of soil particle size distribution (PSD) changes with land-use patterns in the alluvial fans of collapsing gullies. Recently, the fractal method has been applied to estimate soil structure and has proven to be an effective tool in analyzing soil properties and their relationships with other eco-environmental factors. In this study, the soil fractal dimension (D), physico-chemical properties and their relationship with different land-use patterns in alluvial fans were investigated in an experiment that involved seven collapsing gully areas in seven counties of southern China. Our results demonstrated that different land-use patterns of alluvial fans had a significant effect on soil physico-chemical properties. Compared to grasslands and woodlands, farmlands and orchards generally contained more fine soil particles (silt and clay) and fewer coarse particles, whereas significant differences were found in the fractal dimension of soil PSD in different land-use patterns. Specifically, the soil fractal dimension was lower in grasslands and higher in orchards relative to that of other land-use patterns. The average soil fractal dimension of grasslands had a value that was 0.08 lower than that of orchards. Bulk density was lower but porosity was higher in farmlands and orchards. Saturated moisture content was lower in woodlands and grasslands, but saturated hydraulic conductivity was higher in all four land-use patterns. Additionally, the fractal dimension had significant linear relationships with the silt, clay and sand contents and soil properties and exhibited a positive correlation with the clay (R2 = 0.976, P<0.001), silt (R2 = 0.578, P<0.01), organic carbon (R2 = 0.777, P<0.001) and saturated water (R2 = 0.639, P<0.01) contents but a negative correlation with gravel content (R2 = 0.494, P<0.01), coarse sand content (R2 = 0.623, P<0.01) and saturated hydraulic conductivity (R2 = 0.788, P<0.001). However, the fractal dimension exhibited no significant correlation with pH, bulk density or total porosity. Furthermore, the second-degree polynomial equation was found to be more adequate for describing the correlations between soil fractal dimension and particle size distribution. The results of this study demonstrate that a fractal dimension analysis of soil particle size distribution is a useful method for the quantitative description of different land-use patterns in the alluvial fans of collapsing gullies in southern China.


Assuntos
Fractais , Dióxido de Silício , Solo , China , Conservação dos Recursos Naturais , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA