Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microbiol Spectr ; 11(6): e0278823, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948390

RESUMO

IMPORTANCE: Antibiotic resistance and tolerance are substantial healthcare-related problems, hampering effective treatment of bacterial infections. Mutations in the phosphodiesterase GdpP, which degrades cyclic di-3', 5'-adenosine monophosphate (c-di-AMP), have recently been associated with resistance to beta-lactam antibiotics in clinical Staphylococcus aureus isolates. In this study, we show that high c-di-AMP levels decreased the cell size and increased the cell wall thickness in S. aureus mutant strains. As a consequence, an increase in resistance to cell wall targeting antibiotics, such as oxacillin and fosfomycin as well as in tolerance to ceftaroline, a cephalosporine used to treat methicillin-resistant S. aureus infections, was observed. These findings underline the importance of investigating the role of c-di-AMP in the development of tolerance and resistance to antibiotics in order to optimize treatment in the clinical setting.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Parede Celular/metabolismo , Resistência a Meticilina , Estresse Oxidativo , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana
2.
mBio ; 13(2): e0377121, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35343787

RESUMO

Healthcare-associated outbreaks of vancomycin-resistant Enterococcus faecium (VREfm) are a worldwide problem with increasing prevalence. The genomic plasticity of this hospital-adapted pathogen contributes to its efficient spread despite infection control measures. Here, we aimed to identify the genomic and phenotypic determinants of health care-associated transmission of VREfm. We assessed the VREfm transmission networks at the tertiary-care University Hospital of Zurich (USZ) between October 2014 and February 2018 and investigated microevolutionary dynamics of this pathogen. We performed whole-genome sequencing for the 69 VREfm isolates collected during this time frame and assessed the population structure and variability of the vancomycin resistance transposon. Phylogenomic analysis allowed us to reconstruct transmission networks and to unveil external or wider transmission networks undetectable by routine surveillance. Notably, it unveiled a persistent clone, sampled 31 times over a 29-month period. Exploring the evolutionary dynamics of this clone and characterizing the phenotypic consequences revealed the spread of a variant with decreased daptomycin susceptibility and the acquired ability to utilize N-acetyl-galactosamine (GalNAc), one of the primary constituents of the human gut mucins. This nutrient utilization advantage was conferred by a novel plasmid, termed pELF_USZ, which exhibited a linear topology. This plasmid, which was harbored by two distinct clones, was transferable by conjugation. Overall, this work highlights the potential of combining epidemiological, functional genomic, and evolutionary perspectives to unveil adaptation strategies of VREfm. IMPORTANCE Sequencing microbial pathogens causing outbreaks has become a common practice to characterize transmission networks. In addition to the signal provided by vertical evolution, bacterial genomes harbor mobile genetic elements shared horizontally between clones. While macroevolutionary studies have revealed an important role of plasmids and genes encoding carbohydrate utilization systems in the adaptation of Enterococcus faecium to the hospital environment, mechanisms of dissemination and the specific function of many of these genetic determinants remain to be elucidated. Here, we characterize a plasmid providing a nutrient utilization advantage and show evidence for its clonal and horizontal spread at a local scale. Further studies integrating epidemiological, functional genomics, and evolutionary perspectives will be critical to identify changes shaping the success of this pathogen.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Enterococcus faecium/genética , Genômica , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Nutrientes , Plasmídeos/genética , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/genética
3.
Front Microbiol ; 11: 1415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695082

RESUMO

Staphylococcus aureus causes chronic and relapsing infections, which may be difficult to treat. So-called small colony variants (SCVs) have been associated with chronic infections and their occurrence has been shown to increase under antibiotic pressure, low pH and intracellular localization. In clinics, S. aureus isolated from invasive infections often show a dysfunction in the accessory gene regulator (agr), a major virulence regulatory system in S. aureus. To assess whether intracellular environment and agr function influence SCV formation, an infection model was established using lung epithelial cells and skin fibroblasts. This allowed analyzing intracellular survival and localization of a panel of S. aureus wild type strains and their isogenic agr knock out mutants as well as a natural dysfunctional agr strain by confocal laser scanning microscopy (CLSM). Furthermore, bacterial colonies were quantified after 1, 3, and 5 days of intracellular survival by time-lapse analysis to determine kinetics of colony appearance and SCV formation. Here, we show that S. aureus strains with an agr knock out predominantly resided in a neutral environment, whereas wild type strains and an agr complemented strain resided in an acidic environment. S. aureus agr mutants derived from an intracellular environment showed a higher percentage of SCVs as compared to their corresponding wild type strains. Neutralizing acidic phagolysosomes with chloroquine resulted in a significant reduction of SCVs in S. aureus wild type strain 6850, but not in its agr mutant indicating a pH dependent formation of SCVs in the wild type strain. The in-depth understanding of the interplay between intracellular persistence, agr function and pH should help to identify new therapeutic options facilitating the treatment of chronic S. aureus infections in the future.

4.
Nat Commun ; 10(1): 1149, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850614

RESUMO

Treatment failure in biofilm-associated bacterial infections is an important healthcare issue. In vitro studies and mouse models suggest that bacteria enter a slow-growing/non-growing state that results in transient tolerance to antibiotics in the absence of a specific resistance mechanism. However, little clinical confirmation of antibiotic tolerant bacteria in patients exists. In this study we investigate a Staphylococcus epidermidis pacemaker-associated endocarditis, in a patient who developed a break-through bacteremia despite taking antibiotics to which the S. epidermidis isolate is fully susceptible in vitro. Characterization of the clinical S. epidermidis isolates reveals in-host evolution over the 16-week infection period, resulting in increased antibiotic tolerance of the entire population due to a prolonged lag time until growth resumption and a reduced growth rate. Furthermore, we observe adaptation towards an increased biofilm formation capacity and genetic diversification of the S. epidermidis isolates within the patient.


Assuntos
Antibacterianos/farmacologia , Bacteriemia/microbiologia , Resistência a Múltiplos Medicamentos/genética , Endocardite/microbiologia , Interações Hospedeiro-Patógeno/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética , Adulto , Bacteriemia/tratamento farmacológico , Bacteriemia/patologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Tolerância a Medicamentos/genética , Endocardite/tratamento farmacológico , Endocardite/patologia , Evolução Molecular , Fluoroquinolonas/farmacologia , Glicopeptídeos/farmacologia , Humanos , Mutação INDEL , Masculino , Testes de Sensibilidade Microbiana , Marca-Passo Artificial/microbiologia , Peptídeos Cíclicos/farmacologia , Filogenia , Polimorfismo de Nucleotídeo Único , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/patologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/isolamento & purificação , beta-Lactamas/farmacologia
6.
Antimicrob Agents Chemother ; 60(10): 5957-67, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458233

RESUMO

Staphylococcus aureus biofilms are extremely difficult to treat. They provide a protected niche for the bacteria, rendering them highly recalcitrant toward host defenses as well as antibiotic treatment. Bacteria within a biofilm are shielded from the immune system by the formation of an extracellular polymeric matrix, composed of polysaccharides, extracellular DNA (eDNA), and proteins. Many antibiotics do not readily penetrate biofilms, resulting in the presence of subinhibitory concentrations of antibiotics. Here, we show that subinhibitory concentrations of clindamycin triggered a transcriptional stress response in S. aureus via the alternative sigma factor B (σ(B)) and upregulated the expression of the major biofilm-associated genes atlA, lrgA, agrA, the psm genes, fnbA, and fnbB Our data suggest that subinhibitory concentrations of clindamycin alter the ability of S. aureus to form biofilms and shift the composition of the biofilm matrix toward higher eDNA content. An understanding of the molecular mechanisms underlying biofilm assembly and dispersal in response to subinhibitory concentrations of clinically relevant antibiotics such as clindamycin is critical to further optimize antibiotic treatment strategies of biofilm-associated S. aureus infections.


Assuntos
Antibacterianos/farmacologia , Clindamicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Clindamicina/administração & dosagem , Relação Dose-Resposta a Droga , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Staphylococcus aureus/isolamento & purificação , Staphylococcus aureus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA