Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Future Sci OA ; 10(1): FSO964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817352

RESUMO

Aim: We explored the generation of human induced pluripotent stem cells (iPSCs) solely through the transcriptional activation of endogenous genes by CRISPR activation (CRISPRa). Methods: Minimal number of human-specific guide RNAs targeting a limited set of loci were used with a unique cocktail of small molecules (CRISPRa-SM). Results: iPSC clones were efficiently generated by CRISPRa-SM, expressed general and naive iPSC markers and clustered with high-quality iPSCs generated using conventional reprogramming methods. iPSCs showed genomic stability and robust pluripotent potential as assessed by in vitro and in vivo. Conclusion: CRISPRa-SM-generated human iPSCs by direct and multiplexed loci activation facilitating a unique and potentially safer cellular reprogramming process to aid potential applications in cellular therapy and regenerative medicine.


Combined chemical and CRISPRa-mediated approach leads to efficient generation of human iPSCs.

2.
Med ; 4(7): 457-477.e8, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37172578

RESUMO

BACKGROUND: The advent of chimeric antigen receptor (CAR) T cell therapies has transformed the treatment of hematological malignancies; however, broader therapeutic success of CAR T cells has been limited in solid tumors because of their frequently heterogeneous composition. Stress proteins in the MICA and MICB (MICA/B) family are broadly expressed by tumor cells following DNA damage but are rapidly shed to evade immune detection. METHODS: We have developed a novel CAR targeting the conserved α3 domain of MICA/B (3MICA/B CAR) and incorporated it into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived natural killer (NK) cell (3MICA/B CAR iNK) that expressed a shedding-resistant form of the CD16 Fc receptor to enable tumor recognition through two major targeting receptors. FINDINGS: We demonstrated that 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B while simultaneously exhibiting antigen-specific anti-tumor reactivity across an expansive library of human cancer cell lines. Pre-clinical assessment of 3MICA/B CAR iNK cells demonstrated potent antigen-specific in vivo cytolytic activity against both solid and hematological xenograft models, which was further enhanced in combination with tumor-targeted therapeutic antibodies that activate the CD16 Fc receptor. CONCLUSIONS: Our work demonstrated 3MICA/B CAR iNK cells to be a promising multi-antigen-targeting cancer immunotherapy approach intended for solid tumors. FUNDING: Funded by Fate Therapeutics and NIH (R01CA238039).


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Receptores Fc/metabolismo
3.
Genes Dev ; 35(1-2): 65-81, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33334824

RESUMO

During developmental progression the genomes of immune cells undergo large-scale changes in chromatin folding. However, insights into signaling pathways and epigenetic control of nuclear architecture remain rudimentary. Here, we found that in activated neutrophils calcium influx rapidly recruited the cohesin-loading factor NIPBL to thousands of active enhancers and promoters to dictate widespread changes in compartment segregation. NIPBL recruitment to enhancers and promoters occurred with distinct kinetics. The induction of NIPBL-binding was coordinate with increased P300, BRG1 and RNA polymerase II occupancy. NIPBL-bound enhancers were associated with NFAT, PU.1, and CEBP cis elements, whereas NIPBL-bound promoters were enriched for GC-rich DNA sequences. Using an acute degradation system, we found that the histone acetyltransferases P300 and CBP maintained H3K27ac abundance and facilitated NIPBL occupancy at enhancers and that active transcriptional elongation is essential to maintain H3K27ac abundance. Chromatin remodelers, containing either of the mutually exclusive BRG1 and BRM ATPases, promoted NIPBL recruitment at active enhancers. Conversely, at active promoters, depletion of BRG1 and BRM showed minimal effect on NIPBL occupancy. Finally, we found that calcium signaling in both primary innate and adaptive immune cells swiftly induced NIPBL occupancy. Collectively, these data reveal how transcriptional regulators, histone acetyltransferases, chromatin remodelers, and transcription elongation promote NIPBL occupancy at active enhancers while the induction of NIPLB occupancy at promoters is primarily associated with GC-rich DNA sequences.


Assuntos
Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Genoma/fisiologia , Regiões Promotoras Genéticas/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Ciclo Celular/imunologia , Células Cultivadas , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Neutrófilos/citologia , Transporte Proteico , Elongação da Transcrição Genética
5.
Cell Rep ; 31(1): 107470, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268089

RESUMO

The transition from the follicular B to the plasma cell stage is associated with large-scale changes in cell morphology. Here, we examine whether plasma cell development is also associated with changes in nuclear architecture. We find that the onset of plasma cell development is concomitant with a decline in remote genomic interactions; a gain in euchromatic character at loci encoding for factors that specify plasma cell fate, including Prdm1 and Atf4; and establishment of de novo inter-chromosomal hubs. We find that, in developing plasma cells and concurrent with transcriptional silencing, the Ebf1 locus repositions from an euchromatic to peri-centromeric heterochromatic environment. Finally, we find that inter-chromosomal hubs are enriched for the deposition of either H3K27Ac or H3K27me3. These data indicate that plasma cell fate is orchestrated by elaborate changes in genome topology and that epigenetic marks, linked with super-enhancers or transcriptionally repressed regions, are enriched at inter-chromosomal hubs.


Assuntos
Histonas/metabolismo , Plasmócitos/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Diferenciação Celular/genética , Linhagem da Célula/fisiologia , Cromossomos/genética , Epigênese Genética/genética , Feminino , Genoma/genética , Heterocromatina/genética , Histonas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasmócitos/citologia , Plasmócitos/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Sequências Reguladoras de Ácido Nucleico/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
6.
Genes Dev ; 34(3-4): 149-165, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31919189

RESUMO

Differentiating neutrophils undergo large-scale changes in nuclear morphology. How such alterations in structure are established and modulated upon exposure to microbial agents is largely unknown. Here, we found that prior to encounter with bacteria, an armamentarium of inflammatory genes was positioned in a transcriptionally passive environment suppressing premature transcriptional activation. Upon microbial exposure, however, human neutrophils rapidly (<3 h) repositioned the ensemble of proinflammatory genes toward the transcriptionally permissive compartment. We show that the repositioning of genes was closely associated with the swift recruitment of cohesin across the inflammatory enhancer landscape, permitting an immediate transcriptional response upon bacterial exposure. We found that activated enhancers, marked by increased deposition of H3K27Ac, were highly enriched for cistromic elements associated with PU.1, CEBPB, TFE3, JUN, and FOSL2 occupancy. These data reveal how upon microbial challenge the cohesin machinery is recruited to an activated enhancer repertoire to instruct changes in chromatin folding, nuclear architecture, and to activate an inflammatory gene program.


Assuntos
Núcleo Celular/imunologia , Cromatina/imunologia , Infecções por Escherichia coli/imunologia , Neutrófilos/imunologia , Ativação Transcricional/genética , Ativação Transcricional/imunologia , Células Cultivadas , Escherichia coli , Histonas/metabolismo , Humanos
7.
Cell ; 171(1): 103-119.e18, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938112

RESUMO

It is now established that Bcl11b specifies T cell fate. Here, we show that in developing T cells, the Bcl11b enhancer repositioned from the lamina to the nuclear interior. Our search for factors that relocalized the Bcl11b enhancer identified a non-coding RNA named ThymoD (thymocyte differentiation factor). ThymoD-deficient mice displayed a block at the onset of T cell development and developed lymphoid malignancies. We found that ThymoD transcription promoted demethylation at CTCF bound sites and activated cohesin-dependent looping to reposition the Bcl11b enhancer from the lamina to the nuclear interior and to juxtapose the Bcl11b enhancer and promoter into a single-loop domain. These large-scale changes in nuclear architecture were associated with the deposition of activating epigenetic marks across the loop domain, plausibly facilitating phase separation. These data indicate how, during developmental progression and tumor suppression, non-coding transcription orchestrates chromatin folding and compartmentalization to direct with high precision enhancer-promoter communication.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA não Traduzido/genética , Proteínas Repressoras/genética , Linfócitos T/citologia , Proteínas Supressoras de Tumor/genética , Animais , Fator de Ligação a CCCTC , Cromatina/metabolismo , Leucemia/genética , Região de Controle de Locus Gênico , Linfoma/genética , Camundongos , Lâmina Nuclear/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Timo/citologia , Timo/metabolismo , Transcrição Gênica
8.
Genes Dev ; 31(2): 141-153, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28167501

RESUMO

Neutrophils are responsible for the first line of defense against invading pathogens. Their nuclei are uniquely structured as multiple lobes that establish a highly constrained nuclear environment. Here we found that neutrophil differentiation was not associated with large-scale changes in the number and sizes of topologically associating domains (TADs). However, neutrophil genomes were enriched for long-range genomic interactions that spanned multiple TADs. Population-based simulation of spherical and toroid genomes revealed declining radii of gyration for neutrophil chromosomes. We found that neutrophil genomes were highly enriched for heterochromatic genomic interactions across vast genomic distances, a process named supercontraction. Supercontraction involved genomic regions located in the heterochromatic compartment in both progenitors and neutrophils or genomic regions that switched from the euchromatic to the heterochromatic compartment during neutrophil differentiation. Supercontraction was accompanied by the repositioning of centromeres, pericentromeres, and long interspersed nuclear elements (LINEs) to the neutrophil nuclear lamina. We found that Lamin B receptor expression was required to attach centromeric and pericentromeric repeats but not LINE-1 elements to the lamina. Differentiating neutrophils also repositioned ribosomal DNA and mininucleoli to the lamina-a process that was closely associated with sharply reduced ribosomal RNA expression. We propose that large-scale chromatin reorganization involving supercontraction and recruitment of heterochromatin and nucleoli to the nuclear lamina facilitates the folding of the neutrophil genome into a confined geometry imposed by a multilobed nuclear architecture.


Assuntos
Diferenciação Celular/genética , Genoma Humano/genética , Neutrófilos/citologia , Cromossomos/genética , Cromossomos/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células HEK293 , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor de Lamina B
9.
Curr Opin Genet Dev ; 27: 92-101, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24998386

RESUMO

The organization of chromatin within the nucleus and the regulation of transcription are tightly linked. Recently, mechanisms underlying this relationship have been uncovered. By defining the organizational hierarchy of the genome, determining changes in chromatin organization associated with changes in cell identity, and describing chromatin organization within the context of linear genomic features (such as chromatin modifications and transcription factor binding) and architectural proteins (including Cohesin, CTCF, and Mediator), a new paradigm in genome biology was established wherein genomes are organized around gene regulatory factors that govern cell identity. As such, chromatin organization plays a central role in establishing and maintaining cell state during development, with gene regulation and genome organization being mutually dependent effectors of cell identity.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genoma , Animais , Núcleo Celular/genética , Cromatina , Éxons , Humanos
10.
Cell Stem Cell ; 13(5): 602-16, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24035354

RESUMO

The relationship between 3D organization of the genome and gene-regulatory networks is poorly understood. Here, we examined long-range chromatin interactions genome-wide in mouse embryonic stem cells (ESCs), iPSCs, and fibroblasts and uncovered a pluripotency-specific genome organization that is gradually reestablished during reprogramming. Our data confirm that long-range chromatin interactions are primarily associated with the spatial segregation of open and closed chromatin, defining overall chromosome conformation. Additionally, we identified two further levels of genome organization in ESCs characterized by colocalization of regions with high pluripotency factor occupancy and strong enrichment for Polycomb proteins/H3K27me3, respectively. Underlining the independence of these networks and their functional relevance for genome organization, loss of the Polycomb protein Eed diminishes interactions between Polycomb-regulated regions without altering overarching chromosome conformation. Together, our data highlight a pluripotency-specific genome organization in which pluripotency factors such as Nanog and H3K27me3 occupy distinct nuclear spaces and reveal a role for cell-type-specific gene-regulatory networks in genome organization.


Assuntos
Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Histonas/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Proteínas do Grupo Polycomb/genética , Ligação Proteica
11.
Curr Opin Cell Biol ; 24(6): 793-801, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23199754

RESUMO

Cells face the challenge of storing two meters of DNA in the three-dimensional (3D) space of the nucleus that spans only a few microns. The nuclear organization that is required to overcome this challenge must allow for the accessibility of the gene regulatory machinery to the DNA and, in the case of embryonic stem cells (ESCs), for the transcriptional and epigenetic changes that accompany differentiation. Recent technological advances have allowed for the mapping of genome organization at an unprecedented resolution and scale. These breakthroughs have led to a deluge of new data, and a sophisticated understanding of the relationship between gene regulation and 3D genome organization is beginning to form. In this review we summarize some of the recent findings illuminating the 3D structure of the eukaryotic genome, as well as the relationship between genome topology and function from the level of whole chromosomes to enhancer-promoter loops with a focus on features affecting genome organization in ESCs and changes in nuclear organization during differentiation.


Assuntos
Posicionamento Cromossômico , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genoma/genética , Genoma/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina/genética , Posicionamento Cromossômico/genética , Epigênese Genética , Humanos
12.
J Virol ; 82(14): 6829-37, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18448519

RESUMO

The development of a subunit vaccine for smallpox represents a potential strategy to avoid the safety concerns associated with replication-competent vaccinia virus. Preclinical studies to date with subunit smallpox vaccine candidates, however, have been limited by incomplete information regarding protective antigens and the requirement for multiple boost immunizations to afford protective immunity. Here we explore the protective efficacy of replication-incompetent, recombinant adenovirus serotype 35 (rAd35) vectors expressing the vaccinia virus intracellular mature virion (IMV) antigens A27L and L1R and extracellular enveloped virion (EEV) antigens A33R and B5R in a murine vaccinia virus challenge model. A single immunization with the rAd35-L1R vector effectively protected mice against a lethal systemic vaccinia virus challenge. The rAd35-L1R vector also proved more efficacious than the combination of four rAd35 vectors expressing A27L, L1R, A33R, and B5R. Moreover, serum containing L1R-specific neutralizing antibodies afforded postexposure prophylaxis after systemic vaccinia virus infection. In contrast, the combination of rAd35-L1R and rAd35-B5R vectors was required to protect mice against a lethal intranasal vaccinia virus challenge, suggesting that both IMV- and EEV-specific immune responses are important following intranasal infection. Taken together, these data demonstrate that different protective antigens are required based on the route of vaccinia virus challenge. These studies also suggest that rAd vectors warrant further assessment as candidate subunit smallpox vaccines.


Assuntos
Vacina Antivariólica/imunologia , Varíola/imunologia , Varíola/prevenção & controle , Vaccinia virus/imunologia , Adenoviridae/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/uso terapêutico , Peso Corporal , Quimioprevenção/métodos , Vírus da Ectromelia/genética , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vacina Antivariólica/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
13.
J Virol ; 82(10): 4844-52, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18337575

RESUMO

Recombinant adenovirus serotype 5 (rAd5) vaccine vectors for human immunodeficiency virus type 1 (HIV-1) and other pathogens have been shown to elicit antigen-specific cellular immune responses. Rare serotype rAd vectors have also been constructed to circumvent preexisting anti-Ad5 immunity and to facilitate the development of novel heterologous rAd prime-boost regimens. Here we show that rAd5, rAd26, and rAd48 vectors elicit qualitatively distinct phenotypes of cellular immune responses in rhesus monkeys and can be combined as potent heterologous prime-boost vaccine regimens. While rAd5-Gag induced primarily gamma interferon-positive (IFN-gamma(+)) and IFN-gamma(+)/tumor necrosis factor alpha(+) (TNF-alpha(+)) T-lymphocyte responses, rAd26-Gag and rAd48-Gag induced higher proportions of interleukin-2(+) (IL-2(+)) and polyfunctional IFN-gamma(+)/TNF-alpha(+)/IL-2(+) T-lymphocyte responses. Priming with the rare serotype rAd vectors proved remarkably effective for subsequent boosting with rAd5 vectors. These data demonstrate that the rare serotype rAd vectors elicited T-lymphocyte responses that were phenotypically distinct from those elicited by rAd5 vectors and suggest the functional relevance of polyfunctional CD8(+) and CD4(+) T-lymphocyte responses. Moreover, qualitative differences in cellular immune responses may prove critical in determining the overall potency of heterologous rAd prime-boost regimens.


Assuntos
Adenoviridae/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos/imunologia , Vacinas contra a SAIDS/imunologia , Animais , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Imunização/métodos , Imunização Secundária/métodos , Interferon gama/biossíntese , Interleucina-2/biossíntese , Macaca mulatta , Fator de Necrose Tumoral alfa/biossíntese
14.
J Virol ; 81(9): 4654-63, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17329340

RESUMO

Recombinant adenovirus serotype 5 (rAd5) vector-based vaccines are currently being developed for both human immunodeficiency virus type 1 and other pathogens. The potential limitations associated with rAd5 vectors, however, have led to the construction of novel rAd vectors derived from rare Ad serotypes. Several rare serotype rAd vectors have already been described, but a detailed comparison of multiple rAd vectors from subgroups B and D has not previously been reported. Such a comparison is critical for selecting optimal rAd vectors for advancement into clinical trials. Here we describe the construction of three novel rAd vector systems from Ad26, Ad48, and Ad50. We report comparative seroprevalence and immunogenicity studies involving rAd11, rAd35, and rAd50 vectors from subgroup B; rAd26, rAd48, and rAd49 vectors from subgroup D; and rAd5 vectors from subgroup C. All six rAd vectors from subgroups B and D exhibited low seroprevalence in a cohort of 200 individuals from sub-Saharan Africa, and they elicited Gag-specific cellular immune responses in mice both with and without preexisting anti-Ad5 immunity. The rAd vectors from subgroup D were also evaluated using rhesus monkeys and were shown to be immunogenic after a single injection. The rAd26 vectors proved the most immunogenic among the rare serotype rAd vectors studied, although all rare serotype rAd vectors were still less potent than rAd5 vectors in the absence of anti-Ad5 immunity. These studies substantially expand the portfolio of rare serotype rAd vectors that may prove useful as vaccine vectors for the developing world.


Assuntos
Infecções por Adenoviridae/epidemiologia , Adenoviridae/genética , Vetores Genéticos/genética , Vacinas Sintéticas/genética , Vacinas Virais/genética , Infecções por Adenoviridae/sangue , África Subsaariana/epidemiologia , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/imunologia , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Testes de Neutralização , Análise de Sequência de DNA , Estudos Soroepidemiológicos , Sorotipagem
15.
J Virol ; 80(24): 12009-16, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17035318

RESUMO

The high prevalence of preexisting immunity to adenovirus serotype 5 (Ad5) in human populations has led to the development of recombinant adenovirus (rAd) vectors derived from rare Ad serotypes as vaccine candidates for human immunodeficiency virus type 1 and other pathogens. Vaccine vectors have been constructed from Ad subgroup B, including rAd11 and rAd35, as well as from Ad subgroup D, including rAd49. However, the optimal combination of vectors for heterologous rAd prime-boost vaccine regimens and the extent of cross-reactive vector-specific neutralizing antibodies (NAbs) remain poorly defined. We have shown previously that the closely related vectors rAd11 and rAd35 elicited low levels of cross-reactive NAbs. Here we show that these cross-reactive NAbs correlated with substantial sequence homology in the hexon hypervariable regions (HVRs) and suppressed the immunogenicity of heterologous rAd prime-boost regimens. In contrast, vectors with lower hexon HVR homology, such as rAd35 and rAd49, did not elicit detectable cross-reactive vector-specific NAbs. Consistent with these findings, rAd35-rAd49 vaccine regimens proved more immunogenic than both rAd35-rAd5 and rAd35-rAd11 regimens in mice with anti-Ad5 immunity. These data suggest that optimal heterologous rAd prime-boost regimens should include two vectors that are both rare in human populations to circumvent preexisting antivector immunity as well as sufficiently immunologically distinct to avoid cross-reactive antivector immunity.


Assuntos
Adenoviridae/imunologia , Reações Cruzadas/imunologia , Vetores Genéticos/imunologia , Vacinas Sintéticas/imunologia , Adenoviridae/genética , Animais , Anticorpos/imunologia , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Técnicas Imunoenzimáticas , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA