Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Phys Chem Chem Phys ; 26(15): 11604-11610, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38545925

RESUMO

Picosecond pulse radiolysis measurements were employed to assess the effectiveness of N3- in scavenging quasi-free electrons in aqueous solutions. The absorption spectra of hydrated electrons were recorded within a 100 ps timeframe across four distinct solutions with N3- concentrations of 0.5, 1, 2, and 5 M in water. The results revealed a concentration-dependent shift in the maximum absorption spectra of fully solvated electrons. Notably, at 5 M concentration, the maximum absorption occurred at 670 nm, in contrast to 715 nm observed for water. Intriguingly, the formation yield of hydrated electrons within the initial 5 ps electron pulse remained unaffected, showing that, even at a concentration of 5 M, N3- does not effectively scavenge quasi-free electrons. This is in disagreement with conclusions from stochastic models found in the literature. This observation has an important impact on understanding the mechanism of H2 formation in water radiolysis, which we discuss briefly here.

2.
Nat Commun ; 14(1): 7116, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932333

RESUMO

Time-resolved identification of surface-bound intermediates on metallic nanocatalysts is imperative to develop an accurate understanding of the elementary steps of CO2 reduction. Direct observation on initial electron transfer to CO2 to form surface-bound CO2•- radicals is lacking due to the technical challenges. Here, we use picosecond pulse radiolysis to generate CO2•- via aqueous electron attachment and observe the stabilization processes toward well-defined nanoscale metallic sites. The time-resolved method combined with molecular simulations identifies surface-bound intermediates with characteristic transient absorption bands and distinct kinetics from nanosecond to the second timescale for three typical metallic nanocatalysts: Cu, Au, and Ni. The interfacial interactions are further investigated by varying the important factors, such as catalyst size and the presence of cation in the electrolyte. This work highlights fundamental ultrafast spectroscopy to clarify the critical initial step in the CO2 catalytic reduction mechanism.

3.
J Phys Chem B ; 127(37): 7974-7982, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37681575

RESUMO

The decay kinetics of the hydrated electron (eaq-) in aerosol OT (AOT)-based ternary microemulsions with pool sizes ranging from 0.34 to 4.85 nm were studied using picosecond pulse radiolysis coupled with transient absorption UV-vis spectroscopy. Electron transfer from oil to water and the subsequent solvation occurred within a time resolution of 7 ps. The decay kinetics of eaq- were accurately modeled using a double-exponential decay model, revealing the occurrence of two types of reactions, i.e., the recombination reaction at the water-oil interface and the radical-radical reactions in the water pools. The apparent lifetimes of both types of decays decreased significantly as the size of water pools decreased, indicating the influence of nanoconfinement effects. Moreover, the importance of the water-oil interface increased with decreasing water content, regardless of the presence or absence of NO3- as an electron scavenger in the water pools. Our findings provide a comprehensive understanding on the kinetics of the radiation reaction in AOT-based microemulsions.

4.
ChemSusChem ; 16(23): e202300692, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37385952

RESUMO

Aqueous solutions are crucial to most domains in biology and chemistry, including in energy fields such as catalysis and batteries. Water-in-salt electrolytes (WISEs), which extend the stability of aqueous electrolytes in rechargeable batteries, are one example. While the hype for WISEs is huge, commercial WISE-based rechargeable batteries are still far from reality, and there remain several fundamental knowledge gaps such as those related to their long-term reactivity and stability. Here, we propose a comprehensive approach to accelerating the study of WISE reactivity by using radiolysis to exacerbate the degradation mechanisms of concentrated LiTFSI-based aqueous solutions. We find that the nature of the degradation species depends strongly on the molality of the electrolye, with degradation routes driven by the water or the anion at low or high molalities, respectively. The main aging products are consistent with those observed by electrochemical cycling, yet radiolysis also reveals minor degradation species, providing a unique glimpse of the long-term (un)stability of these electrolytes.

5.
Phys Chem Chem Phys ; 25(23): 15916-15919, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37260195

RESUMO

The reactivity of electrons in the CO2-water system was evaluated through picosecond electron pulse radiolysis at different gas pressures (ranging from 1 to 118 bar) and temperatures (25 and 35 °C) coupled with UV-vis transient spectroscopy. A custom-made spectroscopic cell was utilized for these experiments, which allowed for regulation of temperature and pressure. The scavenging of electrons was measured directly at gas pressures even in the supercritical state, and the results showed a non-monotonic dependence of electron reactivity with CO2 concentration, in agreement with the changing molar concentration of CO2 in water under varying pressure.

6.
RSC Adv ; 13(13): 8557-8563, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936851

RESUMO

In this work, the mechanism of dioxygen reduction catalysed by gold nanoparticles (AuNPs) by two electron donors was investigated, i.e., by sodium ascorbate and hydroethidine, focusing on potential ROS (reactive oxygen species) formation, such as O2˙- and H2O2. According to our results, when AuNPs catalyse the reduction of O2, ROS are formed only as intermediates on the surface of nanoparticles, and they are unavoidably reduced to water, catalysed by the AuNPs. Thus, the statement on ROS production in the presence of AuNPs often reported in the literature is excessive. The AuNPs can catalyze the oxidation of electron donors in the cell, e.g., antioxidants causing oxidative stress. Therefore we propose that when explaining damage in the living cells observed in the presence of AuNP, the catalysis of redox reactions by AuNPs must be considered.

7.
J Phys Chem B ; 127(7): 1563-1571, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36780335

RESUMO

5-Azidomethyl-2'-deoxyuridine (5-AmdU, 1) has been successfully employed for the metabolic labeling of DNA and fluorescent imaging of live cells. 5-AmdU also demonstrated significant radiosensitization in breast cancer cells via site-specific nitrogen-centered radical (π-aminyl (U-5-CH2-NH•), 2, and σ-iminyl (U-5-CH═N•), 3) formation. This work shows that these nitrogen-centered radicals are not formed via the reduction of the azido group in 6-azidomethyluridine (6-AmU, 4). Radical assignments were performed using electron spin resonance (ESR) in supercooled solutions, pulse radiolysis in aqueous solutions, and theoretical (DFT) calculations. Radiation-produced electron addition to 4 leads to the facile N3- loss, forming a stable neutral C-centered allylic radical (U-6-CH2•, 5) through dissociative electron attachment (DEA) via the transient negative ion, TNI (U-6-CH2-N3•-), in agreement with DFT calculations. In contrast, TNI (U-5-CH2-N3•-) of 1, via facile N2 loss (DEA) and protonation from the surrounding water, forms radical 2. Subsequently, 2 undergoes rapid H-atom abstraction from 1 and produces the metastable intermediate α-azidoalkyl radical (U-5-CH•-N3). U-5-CH•-N3 converts facilely to radical 3. N3- loss from U-6-CH2-N3•- is thermodynamically controlled, whereas N2 loss from U-5-CH2-N3•- is dictated by protonation from the surrounding waters and resonance conjugation of the azidomethyl side chain at C5 with the pyrimidine ring.


Assuntos
Nitrogênio , Nucleosídeos , Nitrogênio/química , Azidas , Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Água/química , Radicais Livres/química
8.
J Phys Chem B ; 126(2): 430-442, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34990129

RESUMO

This work shows that S atom substitution in phosphate controls the directionality of hole transfer processes between the base and sugar-phosphate backbone in DNA systems. The investigation combines synthesis, electron spin resonance (ESR) studies in supercooled homogeneous solution, pulse radiolysis in aqueous solution at ambient temperature, and density functional theory (DFT) calculations of in-house synthesized model compound dimethylphosphorothioate (DMTP(O-)═S) and nucleotide (5'-O-methoxyphosphorothioyl-2'-deoxyguanosine (G-P(O-)═S)). ESR investigations show that DMTP(O-)═S reacts with Cl2•- to form the σ2σ*1 adduct radical -P-S[Formula: see text]Cl, which subsequently reacts with DMTP(O-)═S to produce [-P-S[Formula: see text]S-P-]-. -P-S[Formula: see text]Cl in G-P(O-)═S undergoes hole transfer to Gua, forming the cation radical (G•+) via thermally activated hopping. However, pulse radiolysis measurements show that DMTP(O-)═S forms the thiyl radical (-P-S•) by one-electron oxidation, which did not produce [-P-S[Formula: see text]S-P-]-. Gua in G-P(O-)═S is oxidized unimolecularly by the -P-S• intermediate in the sub-picosecond range. DFT thermochemical calculations explain the differences in ESR and pulse radiolysis results obtained at different temperatures.


Assuntos
DNA , Fosfatos , DNA/química , Fosfatos/química , Radiólise de Impulso , Açúcares , Enxofre
9.
Inorg Chem ; 60(23): 17426-17434, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34788035

RESUMO

Selective and sensitive detection of Cu(I) is an ongoing challenge due to its important role in biological systems, for example. Herein, we describe a photoluminescent molecular chemosensor integrating two lanthanide ions (Tb3+ and Eu3+) and respective tryptophan and naphthalene antennas onto a polypeptide backbone. The latter was structurally inspired from copper-regulating biomacromolecules in Gram-negative bacteria and was found to bind Cu+ effectively under pseudobiological conditions (log KCu+ = 9.7 ± 0.2). Ion regulated modulation of lanthanide luminescence in terms of intensity and long, millisecond lifetime offers perspectives in terms of ratiometric and time-gated detection of Cu+. The role of the bound ion in determining the photophysical properties is discussed with the aid of additional model compounds.


Assuntos
Complexos de Coordenação/química , Cobre/análise , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Complexos de Coordenação/síntese química , Íons/química , Substâncias Luminescentes/síntese química , Medições Luminescentes , Estrutura Molecular
10.
Phys Chem Chem Phys ; 23(46): 26494-26500, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806743

RESUMO

Metal nanoparticles can catalyze reactions involving organic free radicals. From the first studies focused on the catalytic reduction of water by free radicals until today, the catalytic oxidation of organic radicals has not received attention. In this work, we present the results on the catalytic activity of gold nanoparticles in the oxidation of 2-propanol to acetone and acetanilide hydroxylation during water radiolysis. A detailed reaction mechanism of α-hydroxyisopropyl radical oxidation is discussed, explaining the increase in acetone formation by ca. 340% in the presence of gold nanoparticles. In the case of acetanilide hydroxylation in the presence of nanoparticles, a strong effect of oxygen in the reaction mechanism was observed: the increase in the oxygen concentration from 0 to 1.22 mM leads to a 40-fold decrease in hydroxylation product formation. This observation is unexpected since, in the absence of gold nanoparticles, oxygen stimulates hydroxylation reactions. We propose that in the presence of both oxygen and nanoparticles, oxygen attaches first to acetanilide OH-adducts, and then nanoparticles catalyze the oxidation of peroxyl type radicals, which does not lead to the formation of hydroxylation products.

11.
J Phys Chem A ; 125(36): 7967-7975, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34470211

RESUMO

Substitution of the thymidine moiety in DNA by C5-substituted halogenated thymidine analogues causes significant augmentation of radiation damage in living cells. However, the molecular pathway involved in such radiosensitization process has not been clearly elucidated to date in solution at room temperature. So far, low-energy electrons (LEEs; 0-20 eV) under vacuum condition and solvated electrons (esol-) in solution are shown to produce the σ-type C5-centered pyrimidine base radical through dissociative electron attachment involving carbon-halogen bond breakage. Formation of this σ-type radical and its subsequent reactions are proposed to cause cellular radiosensitization. Here, we report time-resolved measurements at room temperature, showing that a radiation-produced quasi-free electron (eqf-) in solution promptly breaks the C5-halogen bond in halopyrimidines forming the σ-type C5 radical via an excited transient anion radical. These results demonstrate the importance of ultrafast reactions of eqf-, which are extremely important in chemistry, physics, and biology, including tumor radiochemotherapy.

12.
Chemphyschem ; 22(18): 1900-1906, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216092

RESUMO

The present study proposes a new approach for direct CO2 conversion using primary radicals from water irradiation. In order to ensure reduction of CO2 into CO2-. by all the primary radiation-induced water radicals, we use formate ions to scavenge simultaneously the parent oxidizing radicals H. and OH. producing the same transient CO2-. radicals. Conditions are optimized to obtain the highest conversion yield of CO2 . The goal is achieved under mild conditions of room temperature, neutral pH and 1 atm of CO2 pressure. All the available radicals are exploited for selectively converting CO2 into oxalate that is accompanied by H2 evolution. The mechanism presented accounts for the results and also sheds light on the data in the literature. The radiolytic approach is a mild and scalable route of direct CO2 capture at the source in industry and the products, oxalate salt and H2 , can be easily separated.

13.
Inorg Chem ; 60(14): 10791-10798, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34236828

RESUMO

Due to their similar coordination properties, discrimination of Cu+ and Ag+ by water-soluble luminescent probes is challenging. We have synthesized LCC4Eu, an 18 amino acid cyclic peptide bearing a europium complex, which is able to bind one Cu+ or Ag+ ion by the side chains of two methionines, a histidine and a 3-(1-naphthyl)-l-alanine. In this system, the naphthyl moiety establishes a cation-π interaction with these cations. It also acts as an antenna for the sensitization of Eu3+ luminescence. Interestingly, when excited at 280 nm, LCC4Eu behaves as a turn-on probe for Ag+ (+150% Eu emission) and as a turn-off probe for Cu+ (-50% Eu3+ emission). Shifting the excitation wavelength to 305 nm makes the probe responsive to Ag+ (+380% Eu3+ emission) but not to Cu+ or other physiological cations. Thus, LCC4Eu is uniquely capable of discriminating Ag+ from Cu+. A detailed spectroscopic characterization based on steady-state and time-resolved measurements clearly demonstrates that Eu3+ sensitization relies on electronic energy transfer from the naphthalene triplet state to the Eu3+ excited states and that the cation-π interaction lowers the energy of this triplet state by 700 and 2400 cm-1 for Ag+ and Cu+, respectively. Spectroscopic data point to a modulation of the efficiency of the electronic energy transfer caused by the differential red shift of the naphthalene triplet, deciphering the differential luminescence response of LCC4Eu toward Ag+ and Cu+.


Assuntos
Biomimética , Cobre/análise , Európio/química , Substâncias Luminescentes/química , Prata/análise , Transferência de Energia , Peptídeos Cíclicos/química , Solubilidade , Água/química
14.
Nanomaterials (Basel) ; 11(3)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799351

RESUMO

The ability of gold nanoparticles (AuNPs) to catalyze reactions involving radicals is poorly studied. However, AuNPs are used in applications where chemical reactions involving transient radicals occur. Herein, we investigate AuNPs' catalytic effect on 2-propanol oxidation and acetanilide hydroxylation in aqueous solutions under ionizing radiation at room temperature. In both cases, the presence of AuNPs led to selective oxidation of organic radicals, significantly changing the products' composition and ratio. Based on these observations, we stress how AuNPs' catalytic activity can affect the correctness of reactive oxygen species concentration determination utilizing organic dyes. We also provide a discussion on the role of AuNPs' catalytic activity in the radiosensitization effect actively studied for radiotherapy.

15.
Phys Chem Chem Phys ; 23(10): 5804-5808, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33683267

RESUMO

The reactivity of presolvated electrons with CO2 and N2O was studied in the gas pressure range of 1 to 52 bar. To measure this reactivity, a home-made spectroscopic cell with liquid circulation was developed which can work up to 70 bar of gas pressure. The efficiency of presolvated electron scavenging was determined from the decrease of the solvated electron yield after the application of a 5 ps electron pulse. In addition, the reaction rate between these molecules and solvated electrons was directly determined at gas pressures below the gas critical point, which is in agreement with those presented in the literature measured at gas pressures below <1 atm.

16.
J Phys Chem B ; 125(15): 3843-3849, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33650867

RESUMO

The excess electron in solution is a highly reactive radical involved in various radiation-induced reactions. Its solvation state critically determines the subsequent pathway and rate of transfer. For instance, water plays a dominating role in the electron-induced dealkylation of n-tributyl phosphate in actinide extraction processing. However, the underlying electron solvation processes in such systems are lacking. Herein, we directly observed the solvation dynamics of electrons in H-bonded water and n-tributyl phosphate (TBP) binary solutions with a mole fraction of water (Xw) varying from 0.05 to 0.51 under ambient conditions. Following the evolution of the absorption spectrum of trapped electrons (not fully solvated) with picosecond resolution, we show that electrons statistically distributed would undergo preferential solvation within water molecules extracted in TBP. We determine the time scale of excess electron full solvation from the deconvoluted transient absorption-kinetical data. The process of solvent reorganization accelerates by increasing the water molar fraction, and the rate of this process is 2 orders of magnitude slower compared to bulk water. We assigned the solvation process to hydrogen network reorientation induced by a negative charge of the excess electron that strongly depends on the local water environment. Our findings suggest that water significantly stabilizes the electron in a deeper potential than the pure TBP case. In its new state, the electron is likely to inhibit the dealkylation of extractants in actinide separation.

17.
J Phys Chem A ; 124(51): 10787-10798, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33315402

RESUMO

We investigate the oxidation of silver cyanide AgI(CN)2- in water by the OH radical in order to compare this complex with the free cation Ag+ and to measure the influence of the ligands. High-level ab initio calculations of the model species AgII(CN)2· enable the calibration of molecular simulations and the prediction of the oxidized species: AgII(CN)2(H2O)2· and its absorption spectrum, with an intense band at 292 nm and a weaker one at 390 nm. Pulse radiolysis measurements of the oxidation of AgI(CN)2- by the OH radical in water yields a transient species with a broad, intense band at 290 nm and a weaker band at 410 nm at short times after the pulse and a blue shift of the spectrum at longer times. The prediction of the simulations, that the oxidized complex AgII(CN)2(H2O)2· is formed, is confirmed by thermochemistry. Our calculations also suggest that the formation of the OH-adduct is possible only in very basic solution and that the blue shift observed at long times after the pulse is due to disproportionation of the oxidized complex. We also perform molecular simulations of the oxidation of free Ag+ cations by the OH radical. The results are compared to that of the literature and to the results obtained with the AgI(CN)2- complex.

18.
Nanomaterials (Basel) ; 10(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321905

RESUMO

Gold nanoparticles are known to cause a radiosensitizing effect, which is a promising way to improve radiation therapy. However, the radiosensitization mechanism is not yet fully understood. It is currently assumed that gold nanoparticles can influence various physical, chemical, and biological processes. Pulse radiolysis is a powerful tool that can examine one of the proposed effects of gold nanoparticles, such as increased free radical production. In this work, we shed light on the consequence of ionizing radiation interaction with gold nanoparticles by direct measurements of solvated electrons using the pulse radiolysis technique. We found that at a therapeutically relevant gold concentration (<3 mM atomic gold, <600 µg × cm-3), the presence of gold nanoparticles in solution does not induce higher primary radicals' formation. This result indicates that energy absorption by gold nanoparticles and related effects such as higher ionization of surrounding media and •OH radicals overproduction are not the reason for the radiosensitizing effect reported in the literature.

19.
Chemistry ; 26(43): 9407, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32567105

RESUMO

Invited for the cover of this issue are the groups of Roman Dembinski, Mehran Mostafavi, and Amitava Adhikary at the Polish Academy of Sciences, Université Paris-Saclay, and Oakland University. The image depicts a doughnut as a way of illustrating the hole transfer process. Read the full text of the article at 10.1002/chem.202000247.


Assuntos
Nucleosídeos/química , Fosfatos/química
20.
Chemistry ; 26(43): 9495-9505, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32059063

RESUMO

The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S- )=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+ -P(S- )=S. The ionization potential of G-P(S- )=S was calculated to be slightly lower than that of guanine in 5'-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S- )=S led to dithiyl radical (P-2S. ) formation on the µs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S- )=S concentrations showed a bimolecular conversion of P-2S. to the σ2 -σ*1 -bonded dimer anion radical [-P-2S - . 2S-P-]- [ΔG (150 K, DFT)=-7.2 kcal mol-1 ]. However, [-P-2S - . 2S-P-]- formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=-1.4 kcal mol-1 ]. Neither P-2S. nor [-P-2S - . 2S-P-]- oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.


Assuntos
Ânions/química , DNA/química , Guanina/química , Nucleosídeos/química , Fosfatos/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Radiólise de Impulso , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA