Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 9(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068788

RESUMO

The aim of the study was to develop an orthopedic implant coating in the form of vancomycin-loaded collagen/hydroxyapatite layers (COLHA+V) that combine the ability to prevent bone infection with the ability to promote enhanced osseointegration. The ability to prevent bone infection was investigated employing a rat model that simulated the clinically relevant implant-related introduction of bacterial contamination to the bone during a surgical procedure using a clinical isolate of Staphylococcus epidermidis. The ability to enhance osseointegration was investigated employing a model of a minipig with terminated growth. Six weeks following implantation, the infected rat femurs treated with the implants without vancomycin (COLHA+S. epidermidis) exhibited the obvious destruction of cortical bone as evinced via a cortical bone porosity of up to 20% greater than that of the infected rat femurs treated with the implants containing vancomycin (COLHA+V+S. epidermidis) (3%) and the non-infected rat femurs (COLHA+V) (2%). The alteration of the bone structure of the infected COLHA+S. epidermidis group was further demonstrated by a 3% decrease in the average Ca/P molar ratio of the bone mineral. Finally, the determination of the concentration of vancomycin released into the blood stream indicated a negligible systemic load. Six months following implantation in the pigs, the quantified ratio of new bone indicated an improvement in osseointegration, with a two-fold bone ingrowth on the COLHA (47%) and COLHA+V (52%) compared to the control implants without a COLHA layer (27%). Therefore, it can be concluded that COLHA+V layers are able to significantly prevent the destruction of bone structure related to bacterial infection with a minimal systemic load and, simultaneously, enhance the rate of osseointegration.

2.
Molecules ; 25(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150982

RESUMO

A composite nanofibrous layer containing collagen and hydroxyapatite was deposited on selected surface areas of titanium acetabular cups. The layer was deposited on the irregular surface of these 3D objects using a specially developed electrospinning system designed to ensure the stability of the spinning process and to produce a layer approximately 100 micrometers thick with an adequate thickness uniformity. It was verified that the layer had the intended nanostructured morphology throughout its entire thickness and that the prepared layer sufficiently adhered to the smooth surface of the model titanium implants even after all the post-deposition sterilization and stabilization treatments were performed. The resulting layers had an average thickness of (110 ± 30) micrometers and an average fiber diameter of (170 ± 49) nanometers. They were produced using a relatively simple and cost-effective technology and yet they were verifiably biocompatible and structurally stable. Collagen- and hydroxyapatite-based composite nanostructured surface modifications represent promising surface treatment options for metal implants.


Assuntos
Nanoestruturas , Eletricidade Estática , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Análise Espectral Raman
3.
Eur J Pharm Biopharm ; 140: 50-59, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31055065

RESUMO

The aim of this study was to develop a biodegradable nanostructured electrospun layer based on collagen (COL), hydroxyapatite nanoparticles (HA), vancomycin hydrochloride (V), gentamicin sulphate (G) and their combination (VG) for the treatment of prosthetic joint infections and the prevention of infection during the joint replacement procedure. COL/HA layers containing different amounts of HA (0, 5 and 15 wt%) were tested for the in vitro release kinetics of antibiotics, antimicrobial activity against MRSA, gentamicin-resistant Staphylococcus epidermidis and Enterococcus faecalis isolates and cytocompatibility using SAOS-2 bone-like cells. The results revealed that the COL/HA layers released high concentrations of vancomycin and gentamicin for 21 days and performed effectively against the tested clinically-relevant bacterial isolates. The presence of HA in the collagen layers was found not to affect the release kinetics of the vancomycin from the layers loaded only with vancomycin or its combination with gentamicin. Conversely, the presence of HA slowed down the release of gentamicin from the COL/HA layers loaded with gentamicin and its combination with vancomycin. The combination of both antibiotics exerted a positive effect on the prolongation of the conversion of vancomycin into its degradation products. All the layers tested with different antibiotics exhibited potential antibacterial activity with respect to both the tested staphylococci isolates and enterococci. The complemental effect of vancomycin was determined against both gentamicin-resistant Staphylococcus epidermidis and Enterococcus faecalis in contrast to the application of gentamicin as a single agent. This combination was also found to be more effective against MRSA than is vancomycin as a single agent. Importantly, this combination of vancomycin and gentamicin in the COL/HA layers exhibited sufficient cytocompatibility to SAOS-2, which was independent of the HA content. Conversely, only gentamicin caused the death of SAOS-2 independently of HA content and only vancomycin stimulated SAOS-2 behaviour with an increased concentration of HA in the COL/HA layers. In conclusion, COL/HA layers with 15 wt% of HA impregnated with vancomycin or with a combination of vancomycin and gentamicin offer a promising treatment approach and the potential to prevent infection during the joint replacement procedures.


Assuntos
Antibacterianos/farmacologia , Colágeno/química , Durapatita/química , Gentamicinas/farmacologia , Vancomicina/farmacologia , Antibacterianos/química , Cimentos Ósseos/química , Linhagem Celular , Sinergismo Farmacológico , Enterococcus faecalis/efeitos dos fármacos , Gentamicinas/química , Humanos , Cinética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/prevenção & controle , Staphylococcus epidermidis/efeitos dos fármacos , Vancomicina/química
4.
Eur J Pharm Sci ; 100: 219-229, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28132822

RESUMO

The aim of this study was to develop an osteo-inductive resorbable layer allowing the controlled elution of antibiotics to be used as a bone/implant bioactive interface particularly in the case of prosthetic joint infections, or as a preventative procedure with respect to primary joint replacement at a potentially infected site. An evaluation was performed of the vancomycin release kinetics, antimicrobial efficiency and cytocompatibility of collagen/hydroxyapatite layers containing vancomycin prepared employing different hydroxyapatite concentrations. Collagen layers with various levels of porosity and structure were prepared using three different methods: by means of the lyophilisation and electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite and 10wt% of vancomycin, and by means of the electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite followed by impregnation with 10wt% of vancomycin. The maximum concentration of the released active form of vancomycin characterised by means of HPLC was achieved via the vancomycin impregnation of the electrospun layers, whereas the lowest concentration was determined for those layers electrospun directly from a collagen solution containing vancomycin. Agar diffusion testing revealed that the electrospun impregnated layers exhibited the highest level of activity. It was determined that modification using hydroxyapatite exerts no strong effect on vancomycin evolution. All the tested samples exhibited sufficient cytocompatibility with no indication of cytotoxic effects using human osteoblastic cells in direct contact with the layers or in 24-hour infusions thereof. The results herein suggest that nano-structured collagen-hydroxyapatite layers impregnated with vancomycin following cross-linking provide suitable candidates for use as local drug delivery carriers.


Assuntos
Antibacterianos , Colágeno , Sistemas de Liberação de Medicamentos , Durapatita , Vancomicina , Antibacterianos/administração & dosagem , Antibacterianos/química , Linhagem Celular Tumoral , Colágeno/administração & dosagem , Colágeno/química , Durapatita/administração & dosagem , Durapatita/química , Feminino , Humanos , Masculino , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Osteoblastos/efeitos dos fármacos , Plasma/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Vancomicina/administração & dosagem , Vancomicina/química
5.
J Pharm Sci ; 105(3): 1288-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26886321

RESUMO

Infections of the musculoskeletal system present a serious problem with regard to the field of orthopedic and trauma medicine. The aim of the experiment described in this study was to develop a resorbable nanostructured composite layer with the controlled elution of antibiotics. The layer is composed of collagen, hydroxyapatite nanoparticles, and vancomycin hydrochloride (10 wt%). The stability of the collagen was enhanced by means of cross-linking. Four cross-linking agents were studied, namely an ethanol solution, a phosphate buffer solution of N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide, genipin, and nordihydroguaiaretic acid. High performance liquid chromatography was used so as to characterize the in vitro release rates of the vancomycin and its crystalline degradation antibiotically inactive products over a 21-day period. The maximum concentration of the released active form of vancomycin (approximately 265 mg/L) exceeded the minimum inhibitory concentration up to an order of 17 times without triggering the burst releasing effect. At the end of the experiment, the minimum inhibitory concentration was exceeded by up to 6 times (approximately 100 mg/L). It was determined that the modification of collagen with hydroxyapatite nanoparticles does not negatively influence the sustainable release of vancomycin. The balance of vancomycin and its degradation products was observed after 14 days of incubation.


Assuntos
Colágeno/química , Preparações de Ação Retardada/química , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Vancomicina/química , Carbodi-Imidas/química , Portadores de Fármacos/química , Durapatita , Metilaminas/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA