Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Biol Chem ; 299(12): 105409, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918802

RESUMO

Maintenance of the proteasome requires oxidative phosphorylation (ATP) and mitigation of oxidative damage, in an increasingly dysfunctional relationship with aging. SLC3A2 plays a role on both sides of this dichotomy as an adaptor to SLC7A5, a transporter of branched-chain amino acids (BCAA: Leu, Ile, Val), and to SLC7A11, a cystine importer supplying cysteine to the synthesis of the antioxidant glutathione. Endurance in mammalian muscle depends in part on oxidation of BCAA; however, elevated serum levels are associated with insulin resistance and shortened lifespans. Intriguingly, the evolution of modern birds (Neoaves) has entailed the purging of genes including SLC3A2, SLC7A5, -7, -8, -10, and SLC1A4, -5, largely removing BCAA exchangers and their interacting Na+/Gln symporters in pursuit of improved energetics. Additional gene purging included mitochondrial BCAA aminotransferase (BCAT2), pointing to reduced oxidation of BCAA and increased hepatic conversion to triglycerides and glucose. Fat deposits are anhydrous and highly reduced, maximizing the fuel/weight ratio for prolonged flight, but fat accumulation in muscle cells of aging humans contributes to inflammation and senescence. Duplications of the bidirectional α-ketoacid transporters SLC16A3, SLC16A7, the cystine transporters SLC7A9, SLC7A11, and N-glycan branching enzymes MGAT4B, MGAT4C in Neoaves suggests a shift to the transport of deaminated essential amino acid, and stronger mitigation of oxidative stress supported by the galectin lattice. We suggest that Alfred Lotka's theory of natural selection as a maximum power organizer (PNAS 8:151,1922) made an unusually large contribution to Neoave evolution. Further molecular analysis of Neoaves may reveal novel rewiring with applications for human health and longevity.


Assuntos
Aves , Evolução Molecular , Longevidade , Animais , Humanos , Aminoácidos de Cadeia Ramificada/metabolismo , Cistina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Fígado/metabolismo , Longevidade/genética , Aves/genética , Aves/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Seleção Genética
2.
J Biol Chem ; 299(12): 105416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918808

RESUMO

Proteostasis requires oxidative metabolism (ATP) and mitigation of the associated damage by glutathione, in an increasingly dysfunctional relationship with aging. SLC3A2 (4F2hc, CD98) plays a role as a disulfide-linked adaptor to the SLC7A5 and SLC7A11 exchangers which import essential amino acids and cystine while exporting Gln and Glu, respectively. The positions of N-glycosylation sites on SLC3A2 have evolved with the emergence of primates, presumably in synchrony with metabolism. Herein, we report that each of the four sites in SLC3A2 has distinct profiles of Golgi-modified N-glycans. N-glycans at the primate-derived site N381 stabilized SLC3A2 in the galectin-3 lattice against coated-pit endocytosis, while N365, the site nearest the membrane promoted glycolipid-galectin-3 (GL-Lect)-driven endocytosis. Our results indicate that surface retention and endocytosis are precisely balanced by the number, position, and remodeling of N-glycans on SLC3A2. Furthermore, proteomics and functional assays revealed an N-glycan-dependent clustering of the SLC3A2∗SLC7A5 heterodimer with amino-acid/Na+ symporters (SLC1A4, SLC1A5) that balances branched-chain amino acids and Gln levels, at the expense of ATP to maintain the Na+/K+ gradient. In replete conditions, SLC3A2 interactions require Golgi-modified N-glycans at N365D and N381D, whereas reducing N-glycosylation in the endoplasmic reticulum by fluvastatin treatment promoted the recruitment of CD44 and transporters needed to mitigate stress. Thus, SLC3A2 N-glycosylation and Golgi remodeling of the N-glycans have distinct roles in amino acids import for growth, maintenance, and metabolic stresses.


Assuntos
Cadeia Pesada da Proteína-1 Reguladora de Fusão , Transportador 1 de Aminoácidos Neutros Grandes , Estresse Fisiológico , Humanos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Galectina 3/metabolismo , Glicosilação , Células HeLa , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Polissacarídeos/metabolismo
3.
J Neuroinflammation ; 20(1): 209, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37705084

RESUMO

BACKGROUND: In the demyelinating disease multiple sclerosis (MS), chronic-active brain inflammation, remyelination failure and neurodegeneration remain major issues despite immunotherapy. While B cell depletion and blockade/sequestration of T and B cells potently reduces episodic relapses, they act peripherally to allow persistence of chronic-active brain inflammation and progressive neurological dysfunction. N-acetyglucosamine (GlcNAc) is a triple modulator of inflammation, myelination and neurodegeneration. GlcNAc promotes biosynthesis of Asn (N)-linked-glycans, which interact with galectins to co-regulate the clustering/signaling/endocytosis of multiple glycoproteins simultaneously. In mice, GlcNAc crosses the blood brain barrier to raise N-glycan branching, suppress inflammatory demyelination by T and B cells and trigger stem/progenitor cell mediated myelin repair. MS clinical severity, demyelination lesion size and neurodegeneration inversely associate with a marker of endogenous GlcNAc, while in healthy humans, age-associated increases in endogenous GlcNAc promote T cell senescence. OBJECTIVES AND METHODS: An open label dose-escalation mechanistic trial of oral GlcNAc at 6 g (n = 18) and 12 g (n = 16) for 4 weeks was performed in MS patients on glatiramer acetate and not in relapse from March 2016 to December 2019 to assess changes in serum GlcNAc, lymphocyte N-glycosylation and inflammatory markers. Post-hoc analysis examined changes in serum neurofilament light chain (sNfL) as well as neurological disability via the Expanded Disability Status Scale (EDSS). RESULTS: Prior to GlcNAc therapy, high serum levels of the inflammatory cytokines IFNγ, IL-17 and IL-6 associated with reduced baseline levels of a marker of endogenous serum GlcNAc. Oral GlcNAc therapy was safe, raised serum levels and modulated N-glycan branching in lymphocytes. Glatiramer acetate reduces TH1, TH17 and B cell activity as well as sNfL, yet the addition of oral GlcNAc dose-dependently lowered serum IFNγ, IL-17, IL-6 and NfL. Oral GlcANc also dose-dependently reduced serum levels of the anti-inflammatory cytokine IL-10, which is increased in the brain of MS patients. 30% of treated patients displayed confirmed improvement in neurological disability, with an average EDSS score decrease of 0.52 points. CONCLUSIONS: Oral GlcNAc inhibits inflammation and neurodegeneration markers in MS patients despite concurrent immunomodulation by glatiramer acetate. Blinded studies are required to investigate GlcNAc's potential to control residual brain inflammation, myelin repair and neurodegeneration in MS.


Assuntos
Encefalite , Esclerose Múltipla , Humanos , Animais , Camundongos , Acetilglucosamina/uso terapêutico , Interleucina-17 , Acetato de Glatiramer , Interleucina-6 , Esclerose Múltipla/tratamento farmacológico , Inflamação/tratamento farmacológico , Citocinas
4.
Infect Dis Ther ; 12(7): 1891-1905, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410343

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a major public health threat worldwide. Greece has the highest burden of infections due to antibiotic-resistant bacteria among European Union/European Economic Area (EU/EEA) countries. One of the most serious AMR threats in Greece is hospital-acquired infections (HAIs) with limited treatment options (LTO) caused by resistant gram-negative pathogens. Thus, this study sought to estimate the current AMR burden in Greece and the value of reducing AMR to gram-negative pathogens for the Greek healthcare system. METHODS: The current model was adapted from a previously published and validated model of AMR to investigate the overall and AMR-specific burden of treating the most common HAIs with LTO in Greece and scenarios to demonstrate the benefits associated with reducing AMR levels from a third-party payer perspective. Clinical and economic outcomes were estimated over a 10-year time horizon; life years (LYs) and quality-adjusted life years (QALYs) were calculated over a lifetime (based on the annual number of infections over 10 years) at a willingness-to-pay of €30,000 per QALY gained and a 3.5% discount rate. RESULTS: In Greece, the current AMR levels in HAIs with LTO caused by four gram-negative pathogens account for > 316,000 hospital bed days, €73 million in hospitalisation costs, and > 580,000 LYs and 450,000 QALYs lost over 10 years. The monetary burden is estimated at €13.9 billion. A reduction in current AMR levels by 10-50% results in clinical and economic benefit; 29,264-151,699 bed days may be saved, leading to decreased hospitalisation costs (€6.8 million-€35.3 million) and a gain in LYs (85,328-366,162) and QALYs (67,421-289,331), associated with a monetary benefit of between €2.0 billion and €8.7 billion. CONCLUSION: This study shows the substantial clinical and economic burden AMR represents to the Greek healthcare system and the value that can be achieved by effectively reducing AMR levels.

5.
Infect Dis Ther ; 12(7): 1875-1889, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37341866

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a global public health challenge requiring a global response to which Australia has issued a National Antimicrobial Resistance Strategy. The necessity for continued-development of new effective antimicrobials is required to tackle this immediate health threat is clear, but current market conditions may undervalue antimicrobials. We aimed to estimate the health-economic benefits of reducing AMR levels for drug-resistant gram-negative pathogens in Australia, to inform health policy decision-making. METHODS: A published and validated-dynamic health economic model was adapted to the Australian setting. Over a 10-year time horizon, the model estimates the clinical and economic outcomes associated with reducing current AMR levels, by up to 95%, of three gram-negative pathogens in three hospital-acquired infections, from the perspective of healthcare payers. A willingness-to-pay threshold of AUD$15,000-$45,000 per quality-adjusted life-year (QALY) gained and a 5% discount rate (for costs and benefits) were applied. RESULTS: Over ten years, reducing AMR for gram-negative pathogens in Australia is associated with up to 10,251 life-years and 8924 QALYs gained, 9041 bed-days saved and 6644 defined-daily doses of antibiotics avoided. The resulting savings are estimated to be $10.5 million in hospitalisation costs, and the monetary benefit at up to $412.1 million. DISCUSSION: Our results demonstrate the clinical and economic value of reducing AMR impact in Australia. Of note, since our analysis only considered a limited number of pathogens in the hospital setting only and for a limited number of infection types, the benefits of counteracting AMR are likely to extend well beyond the ones demonstrated here. CONCLUSION: These estimates demonstrate the consequences of failure to combat AMR in the Australian context. The benefits in mortality and health system costs justify consideration of innovative reimbursement schemes to encourage the development and commercialisation of new effective antimicrobials.

6.
Infect Dis Ther ; 12(2): 527-543, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36544074

RESUMO

INTRODUCTION: Hospital-acquired infections (HAIs) and growing antimicrobial resistance (AMR) represent a significant healthcare burden globally. Especially in Greece, HAIs with limited treatment options (LTO) pose a serious threat due to increased morbidity and mortality. This study aimed to estimate the clinical and economic value of introducing a new antibacterial for HAIs with LTO in Greece. METHODS: A previously published and validated dynamic model of AMR was adapted to the Greek setting. The model estimated the clinical and economic outcomes of introducing a new antibacterial for the treatment of HAIs with LTO in Greece. The current treatment pathway was compared with introducing a new antibacterial to the treatment sequence. Outcomes were assessed from a third-party payer perspective, over a 10-year transmission period, with quality-adjusted life years (QALYs) and life years (LYs) gained considered over a lifetime horizon. RESULTS: Over the next 10 years, HAIs with LTO in Greece account for approximately 1.4 million hospital bed days, hospitalisation costs of more than €320 million and a loss of approximately 403,000 LYs (319,000 QALYs). Introduction of the new antibacterial as first-line treatment provided the largest clinical and economic benefit, with savings of up to 93,000 bed days, approximately €21 million in hospitalisation costs and an additional 286,000 LYs (226,000 QALYs) in comparison to the current treatment strategy. The introduction of a new antibacterial was linked to a monetary benefit of €6.8 billion at a willingness to pay threshold of €30,000 over 10 years. CONCLUSION: This study highlights the considerable clinical and economic benefit of introducing a new antibacterial for HAIs with LTO in Greece. This analysis shows the additional benefit when a new antibacterial is introduced to treatment sequences. These findings can be used to inform decision makers to implement policies to ensure timely access to new antibacterial treatments in Greece.


Antimicrobial resistance is a major issue for the Greek healthcare system. The overuse of antibacterial agents contributes to the growing resistance levels, making currently available treatment options less effective. As a result, there is an imperative need to address antimicrobial resistance in Greece. This study developed a mathematical model to investigate the clinical and economic benefits of introducing a new antibacterial to current treatment practice. The model uses regression equations to describe the relationships between inputs and outputs from a published and validated model, which describes the transmission and treatment of infections. The model is used to estimate the impact of a new treatment in Greece, considering differing treatment sequence scenarios. The largest health and financial benefits were seen when a new antibacterial was introduced at first line prior to currently used treatments. Over 10 years, savings of up to 93,000 hospital bed days and €21 million in hospitalisation costs could be achieved, as well as a gain of 286,000 patient life years and 226,000 patient quality-adjusted life years (QALYs), a measure of a patient's quality and length of life, over their remaining lifetime. The introduction of a new antibacterial into the current treatment pathway resulted in an overall monetary benefit of €6.8 billion over 10 years, when additional QALYs are valued at €30,000. This study demonstrates considerable health economic benefits of introducing a new antibacterial in Greece and can help inform decision makers when developing a national action plan to combat resistance and improve access to treatments.

7.
Science ; 378(6615): 68-78, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201590

RESUMO

Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.


Assuntos
Neoplasias Encefálicas , Cromossomos Humanos Par 8 , Glioma , Isocitrato Desidrogenase , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromossomos Humanos Par 8/genética , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Mutação , Polimorfismo de Nucleotídeo Único
8.
Nat Aging ; 2(3): 231-242, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35528547

RESUMO

Impaired T cell immunity with aging increases mortality from infectious disease. The branching of Asparagine-linked glycans is a critical negative regulator of T cell immunity. Here we show that branching increases with age in females more than males, in naïve more than memory T cells, and in CD4+ more than CD8+ T cells. Female sex hormones and thymic output of naïve T cells (TN) decrease with age, however neither thymectomy nor ovariectomy altered branching. Interleukin-7 (IL-7) signaling was increased in old female more than male mouse TN cells, and triggered increased branching. N-acetylglucosamine, a rate-limiting metabolite for branching, increased with age in humans and synergized with IL-7 to raise branching. Reversing elevated branching rejuvenated T cell function and reduced severity of Salmonella infection in old female mice. These data suggest sex-dimorphic antagonistic pleiotropy, where IL-7 initially benefits immunity through TN maintenance but inhibits TN function by raising branching synergistically with age-dependent increases in N-acetylglucosamine.


Assuntos
Acetilglucosamina , Linfócitos T CD8-Positivos , Humanos , Masculino , Feminino , Animais , Camundongos , Interleucina-7 , Envelhecimento , Polissacarídeos
9.
Anticancer Agents Med Chem ; 22(8): 1611-1621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34515014

RESUMO

BACKGROUND: Chronic inflammation plays a crucial role in the initiation, promotion, and invasion of tumors, and thus the antiproliferative effects of numerous anti-inflammatory drugs have been frequently reported in the literature. Upregulation of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) has been linked to various human cancers, including breast cancer. OBJECTIVES: This research aims to investigate the antiproliferative activity of different Non-steroidal anti-inflammatory drugs (NSAIDs), including COX-2 selective and non-selective agents, against various breast cancer cell lines and to elucidate possible molecular pathways involved in their activity. METHODS: The antiproliferative and combined effects of NSAIDs with raloxifene were evaluated by MTT assay. Cell migration was assessed using a wound-healing assay. The mechanism of cell death was determined using the Annexin V-FITC/ propidium iodide staining flow cytometry method. A mass spectrometry-based targeted metabolomics approach was used to profile the metabolomic changes induced in the T47d cells upon drug treatment. RESULTS: Our results have demonstrated that celecoxib, a potent and selective COX-2 inhibitor, resulted in significant antiproliferative activity against all examined breast cancer cell lines with IC50 values of 95.44, 49.50. and 97.70 µM against MDA-MB-231, T47d, and MCF-7, respectively. Additionally, celecoxib exhibited a synergistic effect against T47d cells combined with raloxifene, a selective estrogen receptor modulator. Interestingly, celecoxib treatment increased cell apoptosis and resulted in substantial inhibition of cancer cell migration. In addition, the metabolomic analysis suggests that celecoxib may have affected metabolites (n = 43) that are involved in several pathways, including the tricarboxylic acid cycle, amino acids metabolism pathways, and energy production pathways in cancer cells. CONCLUSION: Celecoxib may possess potential therapeutic utility for breast cancer treatment as monotherapy or in combination therapy. The reported metabolic changes taking place upon celecoxib treatment may shed light on possible molecular targets mediating the antiproliferative activity of celecoxib in an independent manner of its COX-2 inhibition.


Assuntos
Neoplasias da Mama , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Neoplasias da Mama/patologia , Celecoxib/farmacologia , Proliferação de Células , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Humanos , Metabolômica , Cloridrato de Raloxifeno/uso terapêutico
10.
JAMA Neurol ; 78(7): 842-852, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33970182

RESUMO

Importance: N-glycan branching modulates cell surface receptor availability, and its deficiency in mice promotes inflammatory demyelination, reduced myelination, and neurodegeneration. N-acetylglucosamine (GlcNAc) is a rate-limiting substrate for N-glycan branching, but, to our knowledge, endogenous serum levels in patients with multiple sclerosis (MS) are unknown. Objective: To investigate a marker of endogenous serum GlcNAc levels in patients with MS. Design, Setting, and Participants: A cross-sectional discovery study and cross-sectional confirmatory study were conducted at 2 academic MS centers in the US and Germany. The discovery study recruited 54 patients with MS from an outpatient clinic as well as 66 healthy controls between April 20, 2010, and June 21, 2013. The confirmatory study recruited 180 patients with MS from screening visits at an academic MS study center between April 9, 2007, and February 29, 2016. Serum samples were analyzed from December 2, 2013, to March 2, 2015. Statistical analysis was performed from February 23, 2020, to March 18, 2021. Main Outcomes and Measures: Serum levels of GlcNAc plus its stereoisomers, termed N-acetylhexosamine (HexNAc), were assessed using targeted tandem mass spectroscopy. Secondary outcomes (confirmatory study) comprised imaging and clinical disease markers. Results: The discovery cohort included 66 healthy controls (38 women; mean [SD] age, 42 [20] years), 33 patients with relapsing-remitting MS (RRMS; 25 women; mean [SD] age, 50 [11] years), and 21 patients with progressive MS (PMS; 14 women; mean [SD] age, 55 [7] years). The confirmatory cohort included 125 patients with RRMS (83 women; mean [SD] age, 40 [9] years) and 55 patients with PMS (22 women; mean [SD] age, 49 [80] years). In the discovery cohort, the mean (SD) serum level of GlcNAc plus its stereoisomers (HexNAc) was 710 (174) nM in healthy controls and marginally reduced in patients with RRMS (mean [SD] level, 682 [173] nM; P = .04), whereas patients with PMS displayed markedly reduced levels compared with healthy controls (mean [SD] level, 548 [101] nM; P = 9.55 × 10-9) and patients with RRMS (P = 1.83 × 10-4). The difference between patients with RRMS (mean [SD] level, 709 [193] nM) and those with PMS (mean [SD] level, 405 [161] nM; P = 7.6 × 10-18) was confirmed in the independent confirmatory cohort. Lower HexNAc serum levels correlated with worse expanded disability status scale scores (ρ = -0.485; P = 4.73 × 10-12), lower thalamic volume (t = 1.7; P = .04), and thinner retinal nerve fiber layer (B = 0.012 [SE = 7.5 × 10-11]; P = .008). Low baseline serum HexNAc levels correlated with a greater percentage of brain volume loss at 18 months (t = 1.8; P = .04). Conclusions and Relevance: This study suggests that deficiency of GlcNAc plus its stereoisomers (HexNAc) may be a biomarker for PMS. Previous preclinical, human genetic, and ex vivo human mechanistic studies revealed that N-glycan branching and/or GlcNAc may reduce proinflammatory responses, promote myelin repair, and decrease neurodegeneration. Combined, the data suggest that GlcNAc deficiency may be associated with progressive disease and neurodegeneration in patients with MS.


Assuntos
Acetilglucosamina/sangue , Esclerose Múltipla Crônica Progressiva/sangue , Doenças Neurodegenerativas/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Estados Unidos
11.
J Exp Clin Cancer Res ; 40(1): 139, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33894774

RESUMO

BACKGROUND: Glioblastomas stem-like cells (GSCs) by invading the brain parenchyma, remains after resection and radiotherapy and the tumoral microenvironment become stiffer. GSC invasion is reported as stiffness sensitive and associated with altered N-glycosylation pattern. Glycocalyx thickness modulates integrins mechanosensing, but details remain elusive and glycosylation enzymes involved are unknown. Here, we studied the association between matrix stiffness modulation, GSC migration and MGAT5 induced N-glycosylation in fibrillar 3D context. METHOD: To mimic the extracellular matrix fibrillar microenvironments, we designed 3D-ex-polyacrylonitrile nanofibers scaffolds (NFS) with adjustable stiffnesses by loading multiwall carbon nanotubes (MWCNT). GSCs neurosphere were plated on NFSs, allowing GSCs migration and MGAT5 was deleted using CRISPR-Cas9. RESULTS: We found that migration of GSCs was maximum at 166 kPa. Migration rate was correlated with cell shape, expression and maturation of focal adhesion (FA), Epithelial to Mesenchymal Transition (EMT) proteins and (ß1,6) branched N-glycan binding, galectin-3. Mutation of MGAT5 in GSC inhibited N-glycans (ß1-6) branching, suppressed the stiffness dependence of migration on 166 kPa NFS as well as the associated FA and EMT protein expression. CONCLUSION: MGAT5 catalysing multibranched N-glycans is a critical regulators of stiffness induced invasion and GSCs mechanotransduction, underpinning MGAT5 as a serious target to treat cancer.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Fenótipo
12.
Cancer Res ; 81(10): 2625-2635, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33602786

RESUMO

Aberrant N-glycan Golgi remodeling and metabolism are associated with epithelial-mesenchymal transition (EMT) and metastasis in patients with breast cancer. Despite this association, the N-glycosylation pathway has not been successfully targeted in cancer. Here, we show that inhibition of the mevalonate pathway with fluvastatin, a clinically approved drug, reduces both N-glycosylation and N-glycan-branching, essential components of the EMT program and tumor metastasis. This indicates novel cross-talk between N-glycosylation at the endoplasmic reticulum (ER) and N-glycan remodeling at the Golgi. Consistent with this cooperative model between the two spatially separated levels of protein N-glycosylation, fluvastatin-induced tumor cell death was enhanced by loss of Golgi-associated N-acetylglucosaminyltransferases MGAT1 or MGAT5. In a mouse model of postsurgical metastatic breast cancer, adjuvant fluvastatin treatment reduced metastatic burden and improved overall survival. Collectively, these data support the immediate repurposing of fluvastatin as an adjuvant therapeutic to combat metastatic recurrence in breast cancer by targeting protein N-glycosylation at both the ER and Golgi. SIGNIFICANCE: These findings show that metastatic breast cancer cells depend on the fluvastatin-sensitive mevalonate pathway to support protein N-glycosylation, warranting immediate clinical testing of fluvastatin as an adjuvant therapy for breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fluvastatina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Ácido Mevalônico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Retículo Endoplasmático/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Feminino , Glicosilação , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos SCID , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Science ; 370(6514): 351-356, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060361

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) couples nutrient sufficiency to cell growth. mTORC1 is activated by exogenously acquired amino acids sensed through the GATOR-Rag guanosine triphosphatase (GTPase) pathway, or by amino acids derived through lysosomal degradation of protein by a poorly defined mechanism. Here, we revealed that amino acids derived from the degradation of protein (acquired through oncogenic Ras-driven macropinocytosis) activate mTORC1 by a Rag GTPase-independent mechanism. mTORC1 stimulation through this pathway required the HOPS complex and was negatively regulated by activation of the GATOR-Rag GTPase pathway. Therefore, distinct but functionally coordinated pathways control mTORC1 activity on late endocytic organelles in response to distinct sources of amino acids.


Assuntos
Aminoácidos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas R-SNARE/metabolismo , Ativação Enzimática , Células HEK293 , Humanos , Pinocitose , Proteólise
14.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32649862

RESUMO

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Assuntos
Dano ao DNA , Redes Reguladoras de Genes/fisiologia , Aminoquinolinas/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Ácidos Picolínicos/farmacologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
15.
Nat Metab ; 2(6): 499-513, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32694731

RESUMO

The de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases, including cancer. Because cancer cells are intrinsically buffered to combat metabolic stress, it is important to understand how cells may adapt to the loss of de novo fatty acid biosynthesis. Here, we use pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a loss-of-function mutation in fatty acid synthase (FASN), whose product catalyses the formation of long-chain fatty acids. FASN-mutant cells show a strong dependence on lipid uptake that is reflected in negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking and protein glycosylation. Further support for these functional relationships is derived from additional GI screens in query cell lines deficient in other genes involved in lipid metabolism, including LDLR, SREBF1, SREBF2 and ACACA. Our GI profiles also identify a potential role for the previously uncharacterized gene C12orf49 (which we call LUR1) in regulation of exogenous lipid uptake through modulation of SREBF2 signalling in response to lipid starvation. Overall, our data highlight the genetic determinants underlying the cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering metabolic buffering mechanisms in human cells.


Assuntos
Ácidos Graxos/biossíntese , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Mapeamento Cromossômico , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Humanos , Lipogênese/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Inanição/genética , Inanição/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
16.
J Biol Chem ; 295(51): 17413-17424, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453988

RESUMO

Myelination plays an important role in cognitive development and in demyelinating diseases like multiple sclerosis (MS), where failure of remyelination promotes permanent neuro-axonal damage. Modification of cell surface receptors with branched N-glycans coordinates cell growth and differentiation by controlling glycoprotein clustering, signaling, and endocytosis. GlcNAc is a rate-limiting metabolite for N-glycan branching. Here we report that GlcNAc and N-glycan branching trigger oligodendrogenesis from precursor cells by inhibiting platelet-derived growth factor receptor-α cell endocytosis. Supplying oral GlcNAc to lactating mice drives primary myelination in newborn pups via secretion in breast milk, whereas genetically blocking N-glycan branching markedly inhibits primary myelination. In adult mice with toxin (cuprizone)-induced demyelination, oral GlcNAc prevents neuro-axonal damage by driving myelin repair. In MS patients, endogenous serum GlcNAc levels inversely correlated with imaging measures of demyelination and microstructural damage. Our data identify N-glycan branching and GlcNAc as critical regulators of primary myelination and myelin repair and suggest that oral GlcNAc may be neuroprotective in demyelinating diseases like MS.


Assuntos
Acetilglucosamina/farmacologia , Diferenciação Celular , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Células Precursoras de Oligodendrócitos/citologia , Acetilglucosamina/administração & dosagem , Acetilglucosamina/uso terapêutico , Administração Oral , Animais , Biomarcadores/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Endocitose , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
17.
Oncotarget ; 10(62): 6668-6677, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31803361

RESUMO

Caveolin-1 is a transmembrane protein with both tumor promoter and suppressor functions that remain poorly understood. Cav1 phosphorylation by Src kinase on tyrosine 14 is closely associated with focal adhesion dynamics and tumor cell migration, however the role of pCav1 in vivo in tumor progression remains poorly characterized. Herein, we expressed phosphomimetic Y14D, wild type, and non-phosphorylatable Y14F forms of Cav1 in MDA-MB-435 cancer cells. Expression of Cav1Y14D reduced cell proliferation and induced the TP53 tumor suppressor. Ectopic expression in MDA-MB-435 cells of Y14 phosphorylatable Cav1 was required for induction of TP53 in response to oxidative stress. Cav1Y14D promotes an apparent reversal of the Warburg effect and markedly inhibited tumor growth in vivo. However, Cav1 induced pseudopodial recruitment of glycolytic enzymes, and time-lapse intravital imaging showed increased invadopodia protrusion and extravasation into blood vessels for Cav1WT and Y14D but not for Y14F. Our results suggest that Cav1 Y14 phosphorylation levels play a role in the conflicting demands on metabolic resources associated with cancer cell proliferation versus motility.

18.
PLoS One ; 14(3): e0214253, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913278

RESUMO

N-acetylglucosamine (GlcNAc) branching of Asn (N)-linked glycans inhibits pro-inflammatory T cell responses and models of autoimmune diseases such as Multiple Sclerosis (MS). Metabolism controls N-glycan branching in T cells by regulating de novo hexosamine pathway biosynthesis of UDP-GlcNAc, the donor substrate for the Golgi branching enzymes. Activated T cells switch metabolism from oxidative phosphorylation to aerobic glycolysis and glutaminolysis. This reduces flux of glucose and glutamine into the hexosamine pathway, thereby inhibiting de novo UDP-GlcNAc synthesis and N-glycan branching. Salvage of GlcNAc into the hexosamine pathway overcomes this metabolic suppression to restore UDP-GlcNAc synthesis and N-glycan branching, thereby promoting anti-inflammatory T regulatory (Treg) over pro-inflammatory T helper (TH) 17 and TH1 differentiation to suppress autoimmunity. However, GlcNAc activity is limited by the lack of a cell surface transporter and requires high doses to enter cells via macropinocytosis. Here we report that GlcNAc-6-acetate is a superior pro-drug form of GlcNAc. Acetylation of amino-sugars improves cell membrane permeability, with subsequent de-acetylation by cytoplasmic esterases allowing salvage into the hexosamine pathway. Per- and bi-acetylation of GlcNAc led to toxicity in T cells, whereas mono-acetylation at only the 6 > 3 position raised N-glycan branching greater than GlcNAc without inducing significant toxicity. GlcNAc-6-acetate inhibited T cell activation/proliferation, TH1/TH17 responses and disease progression in Experimental Autoimmune Encephalomyelitis (EAE), a mouse model of MS. Thus, GlcNAc-6-Acetate may provide an improved therapeutic approach to raise N-glycan branching, inhibit pro-inflammatory T cell responses and treat autoimmune diseases such as MS.


Assuntos
Acetilglucosamina/imunologia , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Células Th1/imunologia , Células Th17/imunologia , Acetilação , Animais , Proliferação de Células , Encefalomielite Autoimune Experimental/patologia , Humanos , Camundongos , Esclerose Múltipla/patologia , Permeabilidade , Células Th1/patologia , Células Th17/patologia
19.
J Vasc Surg ; 69(1): 40-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30579457

RESUMO

BACKGROUND: The usual location of thoracic blunt traumatic aortic injury (BTAI) is just distal to the left subclavian artery; however, injuries can also be found in other locations in the descending thoracic aorta (DTA). METHODS: This is a single-institution, retrospective study, using 74 consecutive BTAI in the DTA. The patients were separated into two groups based on the location of the injury. The proximal group included injuries within 5 cm of the left subclavian artery, whereas the distal group included injuries in the rest of the DTA. A total of 27 factors were compared. RESULTS: Between 2010 and July 2017, we identified 14 of 74 patients (19%) with BTAI in the distal zone. Females were 9 of the 14 (64%) in the distal zone group, whereas females were 16 of 60 (27%) in the proximal zone group (P < .012). Thoracic spine fractures occurred in 7 of the 14 patients (50%) with injuries at the distal zone, whereas they occurred in 12 of the 60 patients (20%) in the proximal zone group (P < .038). Eleven of the 14 distal zone injuries (79%) were grade 1 or 2 compared with 15 of 60 injuries (25%) at the proximal zone (P = .016). Only 2 of the 14 injuries (14%) in the distal zone required an endovascular repair as opposed to 39 of 60 (65%) in the proximal zone (P < .001). The mean hospital duration of stay in patients with BTAI at the distal zone was 8.5 days compared with 20.3 days for patients in the proximal zone group (P < .004). Mortality occurred in 5 of 14 patients (36%) in the distal zone group compared with 5 of 60 patients (8%) in the proximal zone group (P = .017). The odds of mortality from an injury in the distal zone were almost 6-fold greater than the odds of mortality from an injury in the proximal zone (odds ratio, 5.9; 95% confidence interval, 1.2-31.8). No mortalities were related to the BTAI itself. The association of location with mortality remained significant even after adjusting for other significant factors like Injury Severity Score and patient age. Patients who died from injuries in the distal zone had a shorter duration of stay (5 days vs 20 days; P = .0002). CONCLUSIONS: BTAI in the distal zone of DTA are associated with unique characteristics. They are (1) more frequently associated with thoracic spine fractures, (2) more common in women, (3) tend to be lower grade, (4) less likely to require intervention, and (5) seem to have a higher mortality owing to other associated traumatic injuries.


Assuntos
Aorta Torácica/lesões , Traumatismos Torácicos/etiologia , Lesões do Sistema Vascular/etiologia , Ferimentos não Penetrantes/etiologia , Adulto , Pontos de Referência Anatômicos , Aorta Torácica/diagnóstico por imagem , Aortografia/métodos , Angiografia por Tomografia Computadorizada , Feminino , Mortalidade Hospitalar , Humanos , Escala de Gravidade do Ferimento , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Artéria Subclávia/diagnóstico por imagem , Traumatismos Torácicos/diagnóstico por imagem , Traumatismos Torácicos/mortalidade , Traumatismos Torácicos/terapia , Fatores de Tempo , Lesões do Sistema Vascular/diagnóstico por imagem , Lesões do Sistema Vascular/mortalidade , Lesões do Sistema Vascular/terapia , Ferimentos não Penetrantes/diagnóstico por imagem , Ferimentos não Penetrantes/mortalidade , Ferimentos não Penetrantes/terapia
20.
Haematologica ; 103(11): 1925-1936, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30002126

RESUMO

Immune responses to factor VIII remain the greatest complication in the treatment of severe hemophilia A. Recent epidemiological evidence has highlighted that recombinant factor VIII produced in baby hamster kidney cells is more immunogenic than factor VIII produced in Chinese hamster ovary cells. Glycosylation differences have been hypothesized to influence the immunogenicity of these synthetic concentrates. In two hemophilia A mouse models, baby hamster kidney cell-derived factor VIII elicited a stronger immune response compared to Chinese hamster ovary cell-derived factor VIII. Furthermore, factor VIII produced in baby hamster kidney cells exhibited accelerated clearance from circulation independent of von Willebrand factor. Lectin and mass spectrometry analysis of total N-linked glycans revealed differences in high-mannose glycans, sialylation, and the occupancy of glycan sites. Factor VIII desialylation did not influence binding to murine splenocytes or dendritic cells, nor surface co-stimulatory molecule expression. We did, however, observe increased levels of immunoglobulin M specific to baby hamster kidney-derived factor VIII in naïve hemophilia A mice. De-N-glycosylation enhanced immunoglobulin M binding, suggesting that N-glycan occupancy masks epitopes. Elevated levels of immunoglobulin M and immunoglobulin G specific to baby hamster kidney-derived factor VIII were also observed in healthy individuals, and de-N-glycosylation increased immunoglobulin G binding. Collectively, our data suggest that factor VIII produced in baby hamster kidney cells is more immunogenic than that produced in Chinese hamster ovary cells, and that incomplete occupancy of N-linked glycosylation sites leads to the formation of immunoglobulin M- and immunoglobulin G-factor VIII immune complexes that contribute to the enhanced clearance and immunogenicity in these mouse models of hemophilia A.


Assuntos
Fator VIII , Hemofilia A , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Fator VIII/imunologia , Fator VIII/farmacologia , Feminino , Glicosilação , Hemofilia A/tratamento farmacológico , Hemofilia A/genética , Hemofilia A/imunologia , Hemofilia A/patologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA