Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Chem Biol ; 30(10): 1191-1210.e20, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37557181

RESUMO

KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Histonas/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
2.
Acta Crystallogr D Struct Biol ; 76(Pt 9): 889-898, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876064

RESUMO

Cancer is one of the leading causes of mortality in humans, and recent work has focused on the area of immuno-oncology, in which the immune system is used to specifically target cancerous cells. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is an emerging therapeutic target in human cancers owing to its role in degrading cyclic GMP-AMP (cGAMP), an agonist of the stimulator of interferon genes (STING). The available structures of ENPP1 are of the mouse enzyme, and no structures are available with anything other than native nucleotides. Here, the first X-ray crystal structures of the human ENPP1 enzyme in an apo form, with bound nucleotides and with two known inhibitors are presented. The availability of these structures and a robust crystallization system will allow the development of structure-based drug-design campaigns against this attractive cancer therapeutic target.


Assuntos
Inibidores Enzimáticos , Proteínas de Membrana/agonistas , Neoplasias/enzimologia , Diester Fosfórico Hidrolases , Pirofosfatases , Inibidores Enzimáticos/química , Humanos , Diester Fosfórico Hidrolases/química , Ligação Proteica , Conformação Proteica , Pirofosfatases/química
3.
Nature ; 577(7789): 266-270, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31827282

RESUMO

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Assuntos
Histona Acetiltransferases/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular Tumoral , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Terciária de Proteína
4.
Acta Crystallogr D Struct Biol ; 75(Pt 11): 995-1002, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31692473

RESUMO

Atrazine is an s-triazine-based herbicide that is used in many countries around the world in many millions of tons per year. A small number of organisms, such as Pseudomonas sp. strain ADP, have evolved to use this modified s-triazine as a food source, and the various genes required to metabolize atrazine can be found on a single plasmid. The atomic structures of seven of the eight proteins involved in the breakdown of atrazine by Pseudomonas sp. strain ADP have been determined by X-ray crystallography, but the structures of the proteins required by the cell to import atrazine for use as an energy source are still lacking. The structure of AtzT, a periplasmic binding protein that may be involved in the transport of a derivative of atrazine, 2-hydroxyatrazine, into the cell for mineralization, has now been determined. The structure was determined by SAD phasing using an ethylmercury phosphate derivative that diffracted X-rays to beyond 1.9 Šresolution. `Native' (guanine-bound) and 2-hydroxyatrazine-bound structures were also determined to high resolution (1.67 and 1.65 Å, respectively), showing that 2-hydroxyatrazine binds in a similar way to the purportedly native ligand. Structural similarities led to the belief that it may be possible to evolve AtzT from a purine-binding protein to a protein that can bind and detect atrazine in the environment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Cristalografia por Raios X/métodos , Hidrolases/química , Proteínas Periplásmicas de Ligação/química , Atrazina/análogos & derivados , Atrazina/metabolismo , Estrutura Terciária de Proteína , Pseudomonas/metabolismo
5.
Struct Dyn ; 6(6): 064701, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768400

RESUMO

The WD40-repeat protein WDR5 scaffolds various epigenetic writers and is a critical component of the mammalian SET/MLL histone methyltransferase complex. Dysregulation of the MLL1 catalytic function is associated with mixed-lineage leukemia, and antagonism of the WDR5-MLL1 interaction by small molecules has been proposed as a therapeutic strategy for MLL-rearranged cancers. Small molecule binders of the "WIN" site of WDR5 that cause displacement from chromatin have been additionally implicated to be of broader use in cancer treatment. In this study, a fragment screen with Surface Plasmon Resonance (SPR) was used to identify a highly ligand-efficient imidazole-containing compound that is bound in the WIN site. The subsequent medicinal chemistry campaign-guided by a suite of high-resolution cocrystal structures with WDR5-progressed the initial hit to a low micromolar binder. One outcome from this study is a moiety that substitutes well for the side chain of arginine; a tripeptide containing one such substitution was resolved in a high resolution structure (1.5 Å) with a binding mode analogous to the native tripeptide. SPR furthermore indicates a similar residence time (k d = ∼0.06 s-1) for these two analogs. This novel scaffold therefore represents a possible means to overcome the potential permeability issues of WDR5 ligands that possess highly basic groups like guanidine. The series reported here furthers the understanding of the WDR5 WIN site and functions as a starting point for the development of more potent WDR5 inhibitors that may serve as cancer therapeutics.

6.
Nature ; 560(7717): 253-257, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069049

RESUMO

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Assuntos
Benzenossulfonatos/farmacologia , Senescência Celular/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Hidrazinas/farmacologia , Linfoma/tratamento farmacológico , Linfoma/patologia , Sulfonamidas/farmacologia , Acetilação/efeitos dos fármacos , Animais , Benzenossulfonatos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Desenvolvimento de Medicamentos , Fibroblastos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/deficiência , Histona Acetiltransferases/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapêutico , Linfoma/enzimologia , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapêutico
7.
Chemistry ; 24(8): 1922-1930, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29171692

RESUMO

Dihydropteroate synthase (DHPS) is an enzyme of the folate biosynthesis pathway, which catalyzes the formation of 7,8-dihydropteroate (DHPt) from 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (DHPPP) and para-aminobenzoic acid (pABA). DHPS is the long-standing target of the sulfonamide class of antibiotics that compete with pABA. In the wake of sulfa drug resistance, targeting the structurally rigid (and more conserved) pterin site has been proposed as an alternate strategy to inhibit DHPS in wild-type and sulfa drug resistant strains. Following the work on developing pterin-site inhibitors of the adjacent enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), we now present derivatives of 8-mercaptoguanine, a fragment that binds weakly within both enzymes, and quantify sub-µm binding using surface plasmon resonance (SPR) to Escherichia coli DHPS (EcDHPS). Eleven ligand-bound EcDHPS crystal structures delineate the structure-activity relationship observed providing a structural framework for the rational development of novel, substrate-envelope-compliant DHPS inhibitors.


Assuntos
Di-Hidropteroato Sintase/antagonistas & inibidores , Inibidores Enzimáticos/química , Guanina/análogos & derivados , Antibacterianos/química , Antibacterianos/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Di-Hidropteroato Sintase/metabolismo , Inibidores Enzimáticos/metabolismo , Escherichia coli/enzimologia , Guanina/metabolismo , Ligação de Hidrogênio , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Sulfonamidas/química , Ressonância de Plasmônio de Superfície
8.
Chem Commun (Camb) ; 53(99): 13205-13208, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29165449

RESUMO

A new pair of enantiomeric two-armed lanthanide-binding tags have been developed for paramagnetic NMR studies of proteins. The tags produce large and significantly different paramagnetic effects to one another when bound to the same tagging site. Additionally, they are less sensitive to sample pH than our previous two-armed tag designs.

9.
Bioconjug Chem ; 28(6): 1741-1748, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28485576

RESUMO

Pseudocontact shifts (PCS) generated by paramagnetic lanthanides provide a rich source of long-range structural restraints that can readily be measured by nuclear magnetic resonance (NMR) spectroscopy. Many different lanthanide-binding tags have been designed for site-specific tagging of proteins, but established routes for tagging DNA with a single metal ion rely on difficult chemical synthesis. Here we present a simple and practical strategy for site-specific tagging of inexpensive phosphorothioate (PT) oligonucleotides. Commercially available PT oligonucleotides are diastereomers with S and R stereoconfiguration at the backbone PT site. The respective SP and RP diastereomers can readily be separated by HPLC. A new alkylating lanthanide-binding tag, C10, was synthesized that delivered quantitative tagging yields with both diastereomers. PCSs were observed following ligation with the complementary DNA strand to form double-stranded DNA duplexes. The PCSs were larger for the SP than the RP oligonucleotide and good correlation between back-calculated and experimental PCSs was observed. The C10 tag can also be attached to cysteine residues in proteins, where it generates a stable thioether bond. Ligated to the A28C mutant of ubiquitin, the tag produced excellent fits of magnetic susceptibility anisotropy (Δχ) tensors, with larger tensors than for the tagged PT oligonucleotides, indicating that the tag is not completely immobilized after ligation with a PT group.


Assuntos
DNA/química , Elementos da Série dos Lantanídeos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Sítios de Ligação , Oligonucleotídeos Fosforotioatos/química
10.
Chem Commun (Camb) ; 52(51): 7954-7, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250640

RESUMO

Two-armed lanthanide-binding tags induce significant, long-range paramagnetic effects in the NMR spectra of attached proteins. An enantiomeric pair of rigid, two-armed, cyclen-based tags are reported that produce markedly different effects from the same tagging site, allowing for the measurement of complementary paramagnetic restraints for structural studies.

11.
J Med Chem ; 59(11): 5248-63, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27094768

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a member of the folate biosynthesis pathway found in prokaryotes and lower eukaryotes that catalyzes the pyrophosphoryl transfer from the ATP cofactor to a 6-hydroxymethyl-7,8-dihydropterin substrate. We report the chemical synthesis of a series of S-functionalized 8-mercaptoguanine (8MG) analogues as substrate site inhibitors of HPPK and quantify binding against the E. coli and S. aureus enzymes (EcHPPK and SaHPPK). The results demonstrate that analogues incorporating acetophenone-based substituents have comparable affinities for both enzymes. Preferential binding of benzyl-substituted 8MG derivatives to SaHPPK was reconciled when a cryptic pocket unique to SaHPPK was revealed by X-ray crystallography. Differential chemical shift perturbation analysis confirmed this to be a common mode of binding for this series to SaHPPK. One compound (41) displayed binding affinities of 120 nM and 1.76 µM for SaHPPK and EcHPPK, respectively, and represents a lead for the development of more potent and selective inhibitors of SaHPPK.


Assuntos
Difosfotransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Staphylococcus aureus/enzimologia , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Difosfotransferases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
12.
Chemistry ; 22(4): 1228-32, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26634335

RESUMO

Coupling two copies of an iminodiacetic acid-cysteine hybrid ligand to a pair of cysteine residues positioned in an i, i+4 arrangement within a protein α-helix leads to generation of an EDTA-like metal ion-binding motif. Rigid binding of a Co(II) ion by this motif produces pseudo-contact shifts suitable for paramagnetic NMR structural studies.


Assuntos
Cobalto/química , Ácido Edético/química , Sequência de Aminoácidos , Sítios de Ligação , Ligantes , Espectroscopia de Ressonância Magnética , Ligação Proteica
13.
J Med Chem ; 57(22): 9612-26, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25357262

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), an enzyme from the folate biosynthesis pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin and is a yet-to-be-drugged antimicrobial target. Building on our previous discovery that 8-mercaptoguanine (8MG) is an inhibitor of Staphylococcus aureus HPPK (SaHPPK), we have identified and characterized the binding of an S8-functionalized derivative (3). X-ray structures of both the SaHPPK/3/cofactor analogue ternary and the SaHPPK/cofactor analogue binary complexes have provided insight into cofactor recognition and key residues that move over 30 Å upon binding of 3, whereas NMR measurements reveal a partially plastic ternary complex active site. Synthesis and binding analysis of a set of analogues of 3 have identified an advanced new lead compound (11) displaying >20-fold higher affinity for SaHPPK than 8MG. A number of these exhibited low micromolar affinity for dihydropteroate synthase (DHPS), the adjacent, downstream enzyme to HPPK, and may thus represent promising new leads to bienzyme inhibitors.


Assuntos
Difosfotransferases/antagonistas & inibidores , Difosfotransferases/química , Ácido Fólico/biossíntese , Guanina/química , Staphylococcus aureus/enzimologia , Trifosfato de Adenosina/química , Catálise , Domínio Catalítico , Cristalografia por Raios X , Di-Hidropteroato Sintase/química , Íons , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ligação Proteica , Conformação Proteica , Pterinas/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
14.
Mol Inform ; 32(5-6): 505-15, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27481668

RESUMO

Human small molecule metabolites (the human metabolome) are a set of compounds that interact with at least one macromolecule in the biosphere. This study investigates the acid/base profile of the human metabolome, natural products and drugs, together with an analysis of their physicochemical properties. Ionisation constants (pKa values) are estimated for each compound and the identity of the ionisable functional groups in each set is determined. The acid/base and physicochemical property profile of the lipid component of the metabolome differed considerably to the other datasets. In contrast, the acid/base properties of non-lipid metabolites were found to be similar to both drugs and natural products. While the non-lipid metabolites have lower average ClogP values and more hydrogen bond donors than the other datasets, the distribution of physicochemical property values overlapped considerably with the drug dataset. Considering also that the non-lipid metabolites are of biochemical interest, their characteristics have great potential to influence the selection of screening compounds for drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA