Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Psychiatry ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39389408

RESUMO

BACKGROUND: We previously reported that a single injection of (R,S)-ketamine or its metabolite (2S,6S)-hydroxynorketamine (HNK) prior to stress attenuates learned fear. However, whether these drugs attenuate learned fear through divergent or convergent effects on neural activity remains to be determined. METHODS: 129S6/SvEv male mice were injected with saline, (R,S)-ketamine, or (2S,6S)-HNK one week before a 3-shock contextual fear conditioning (CFC) paradigm. Five days later, mice were re-exposed to the aversive context, and euthanized one hour later to quantify active cells. Brains were processed for c-fos immunoreactivity, and neural networks were built with a novel, wide-scale imaging pipeline. RESULTS: We found that (R,S)-ketamine and (2S,6S)-HNK attenuate learned fear. Fear-related neural activity was altered in: dorsal CA3 following (2S,6S)-HNK; ventral CA3 and CA1, infralimbic (IL) and prelimbic (PL) regions, insular cortex (IC), retrosplenial cortex (RSP), piriform cortex (PIR), nucleus reuniens (RE), and periaqueductal grey (PAG) following both (R,S)-ketamine and (2S,6S)-HNK; and in the paraventricular nucleus of thalamus (PVT) following (R,S)-ketamine. Dorsal CA3 and ventral hippocampus activation correlated with freezing in the (R,S)-ketamine group, and RSP activation correlated with freezing in both (R,S)-ketamine and (2S,6S)-HNK groups. (R,S)-ketamine increased connectivity between cortical and subcortical regions while (2S,6S)-HNK increased connectivity within these regions. CONCLUSIONS: This work identifies novel nodes in fear networks, involving the RE, PIR, IC, PAG and RSP, that can be targeted with neuromodulatory strategies or pharmaceutical compounds to treat fear-induced disorders. This approach could be used to optimize target engagement and dosing strategies of existing medications.

2.
Int J Neuropsychopharmacol ; 27(10)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39240140

RESUMO

BACKGROUND: Standard antidepressant treatments often take weeks to reach efficacy and are ineffective for many patients. (R,S)-ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been shown to be a rapid-acting antidepressant and to decrease depressive symptoms within hours of administration. While previous studies have shown the importance of the GluN2B subunit of the NMDA receptor on interneurons in the medial prefrontal cortex, no study to our knowledge has investigated the influence of GluN2B-expressing adult-born granule cells. METHODS: Here, we examined whether (R,S)-ketamine's efficacy depends on adult-born hippocampal neurons using a genetic strategy to selectively ablate the GluN2B subunit of the NMDA receptor from Nestin+ cells in male and female mice, tested across an array of standard behavioral assays. RESULTS: We report that in male mice, GluN2B expression on 6-week-old adult-born neurons is necessary for (R,S)-ketamine's effects on behavioral despair in the forced swim test and on hyponeophagia in the novelty suppressed feeding paradigm, as well on fear behavior following contextual fear conditioning. In female mice, GluN2B expression is necessary for effects on hyponeophagia in novelty suppressed feeding. These effects were not replicated when ablating GluN2B from 2-week-old adult-born neurons. We also find that ablating neurogenesis increases fear expression in contextual fear conditioning, which is buffered by (R,S)-ketamine administration. CONCLUSIONS: In line with previous studies, these results suggest that 6-week-old adult-born hippocampal neurons expressing GluN2B partially modulate (R,S)-ketamine's rapid-acting effects. Future work targeting these 6-week-old adult-born neurons may prove beneficial for increasing the efficacy of (R,S)-ketamine.


Assuntos
Hipocampo , Ketamina , Neurônios , Receptores de N-Metil-D-Aspartato , Animais , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Antidepressivos/farmacologia , Camundongos Endogâmicos C57BL , Antagonistas de Aminoácidos Excitatórios/farmacologia , Camundongos Transgênicos , Medo/efeitos dos fármacos , Medo/fisiologia , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Depressão/tratamento farmacológico
3.
Biol Psychiatry ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39349155

RESUMO

INTRODUCTION: Neuropsychiatric symptoms (NPS), such as depression and anxiety, are observed in 90% of Alzheimer's disease (AD) patients, two-thirds of whom are women. NPS usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brain-wide neuronal mechanisms. METHODS: To gain mechanistic insight into how anxiety impacts AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity utilizing the ArcCreERT2 x enhanced yellow fluorescent protein (eYFP) x APP/PS1 (AD) mice. The ADNI dataset was used to determine the impact of anxiety on AD progression in human subjects. RESULTS: Female APP/PS1 mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control (Ctrl) mice and male mice. Brain-wide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in APP/PS1 mice. Sex-specific eYFP+/c-Fos+ changes were observed; female APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in dorsal CA3 (dCA3), while male APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in the dorsal dentate gyrus (dDG). In the ADNI dataset, anxiety predicted transition to dementia. Female subjects positive for anxiety and amyloid transitioned more quickly to dementia than male subjects. CONCLUSIONS: While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that there are sex differences in AD network dysfunction, and that personalized medicine may benefit male and female AD patients rather than a one size fits all approach.

4.
Neuropharmacology ; 258: 110065, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39004413

RESUMO

(R,S)-ketamine (ketamine) has rapid and sustained antidepressant (AD) efficacy at sub-anesthetic doses in depressed patients. A metabolite of ketamine, including (2R,6R)-hydroxynorketamine ((6)-HNKs) has been reported to exert antidepressant actions in rodent model of anxiety/depression. To further understand the specific role of ketamine's metabolism in the AD actions of the drug, we evaluated the effects of inhibiting hepatic cytochrome P450 enzymes on AD responses. We assessed whether pre-treatment with fluconazole (10 and 20 mg/kg, i. p.) 1 h prior to ketamine or HNKs (10 mg/kg, i. p.) administration would alter behavioral and neurochemical actions of the drugs in male BALB/cJ mice with a highly anxious phenotype. Extracellular microdialysate levels of glutamate and GABA (Gluext, GABAext) were also measured in the medial prefrontal cortex (mPFC). Pre-treatment with fluconazole altered the pharmacokinetic profile of ketamine, by increasing both plasma and brain levels of ketamine and (R,S)-norketamine, while robustly reducing those of (6)-HNKs. At 24 h post-injection (t24 h), fluconazole prevented the sustained AD-like response of ketamine responses in the forced swim test and splash test, as well as the enhanced cortical GABA levels produced by ketamine. A single (2R,6R)-HNK administration resulted in prevention of the effects of fluconazole on the antidepressant-like activity of ketamine in mice. Overall, these findings are consistent with an essential contribution of (6)-HNK to the sustained antidepressant-like effects of ketamine and suggest potential interactions between pharmacological CYPIs and ketamine during antidepressant treatment in patients.


Assuntos
Antidepressivos , Sistema Enzimático do Citocromo P-450 , Fluconazol , Ketamina , Fígado , Camundongos Endogâmicos BALB C , Córtex Pré-Frontal , Ketamina/farmacologia , Ketamina/análogos & derivados , Animais , Masculino , Antidepressivos/farmacologia , Camundongos , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fluconazol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacologia
5.
bioRxiv ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39071434

RESUMO

In the last decade, activity-dependent strategies for labelling multiple immediate early gene (IEG) ensembles in mice have generated unprecedented insight into the mechanisms of memory encoding, storage, and retrieval. However, few strategies exist for brain-wide mapping of multiple ensembles, including their overlapping population, and none incorporate capabilities for downstream network analysis. Here, we introduce a scalable workflow to analyze traditionally coronally-sectioned datasets produced by activity-dependent tagging systems. Intrinsic to this pipeline is simple multi-ensemble atlas registration and statistical testing in R (SMARTR), an R package which wraps mapping capabilities with functions for statistical analysis and network visualization. We demonstrate the versatility of SMARTR by mapping the ensembles underlying the acquisition and expression of learned helplessness (LH), a robust stress model. Applying network analysis, we find that exposure to inescapable shock (IS), compared to context training (CT), results in decreased centrality of regions engaged in spatial and contextual processing and higher influence of regions involved in somatosensory and affective processing. During LH expression, the substantia nigra emerges as a highly influential region which shows a functional reversal following IS, indicating a possible regulatory function of motor activity during helplessness. We also report that IS results in a robust decrease in reactivation activity across a number of cortical, hippocampal, and amygdalar regions, indicating suppression of ensemble reactivation may be a neurobiological signature of LH. These results highlight the emergent insights uniquely garnered by applying our analysis approach to multiple ensemble datasets and demonstrate the strength of our workflow as a hypothesis-generating toolkit.

6.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352478

RESUMO

Engrams or memory traces are the neuronal ensembles that collectively store individual experiences. Genetic strategies based on immediate early genes (IEGs), such as Arc/Arg3.1 , allow us to tag the ensembles active during memory encoding and compare them to those active during retrieval. However, these strategies only allow for the tagging of one neural ensemble. Here, we developed a multiple Arc (mArc) system that allows for the tagging of two Arc + ensembles. We validated this system by investigating how context, time, and valence influence neuronal ensemble reactivation in the dentate gyrus (DG). We show that similar contextual and valenced experiences are encoded in overlapping DG ensembles. We also find that ensembles are modulated by time, where experiences closer in time are encoded in more similar ensembles. These results highlight the dynamic nature of DG ensembles and show that the mArc system provides a powerful approach for investigating multiple memories in the brain. HIGHLIGHTS: The mArc system allows for the tagging of two Arc + ensembles in the same mouse DG ensembles labeled by the mArc system receive increased excitatory inputContext, valence, and time influence DG ensemble reactivationDG neural ensembles are reactivated less with increasing time.

7.
Biol Psychiatry ; 95(1): 15-26, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423591

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization and the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS: To identify the neural ensembles mediating fear generalization, we utilized ArcCreERT2 × enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact model of TBI. Mice were then administered a contextual fear discrimination paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if (R,S)-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS: TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the dentate gyrus, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, (R,S)-ketamine facilitated fear discrimination, and this behavioral improvement was reflected in dentate gyrus memory trace activity. CONCLUSIONS: These data show that TBI induces fear generalization by altering fear memory traces and that this deficit can be improved with a single injection of (R,S)-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.


Assuntos
Lesões Encefálicas Traumáticas , Ketamina , Camundongos , Animais , Ketamina/farmacologia , Hipocampo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Medo , Encéfalo , Camundongos Endogâmicos C57BL
8.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38076870

RESUMO

Standard antidepressant treatments often take weeks to reach efficacy and are ineffective for many patients. ( R,S )-ketamine, an N -methyl-D-aspartate (NMDA) antagonist, has been shown to be a rapid-acting antidepressant and to decrease depressive symptoms within hours of administration. While previous studies have shown the importance of the NR2B subunit of the NMDA receptor (NMDAR) on interneurons in the medial prefrontal cortex (mPFC), no study has investigated the influence of NR2B-expressing adult-born granule cells (abGCs). In this study, we examined whether ( R,S )-ketamine's efficacy depends upon these adult-born hippocampal neurons using a genetic strategy to selectively ablate the NR2B subunit of the NMDAR from Nestin + cells. To validate our findings, we also used several other transgenic lines including one in which NR2B was deleted from an interneuron (Parvalbumin (PV) + ) population. We report that in male mice, NR2B expression on 6-week-old adult-born neurons is necessary for ( R,S )-ketamine's effects on behavioral despair in the forced swim test (FST) and on hyponeophagia in the novelty suppressed feeding (NSF) paradigm, as well on fear behavior following contextual fear conditioning (CFC). In female mice, NR2B expression is necessary for effects on hyponeophagia in the NSF. We also find that ablating neurogenesis increases fear expression in CFC, which is buffered by ( R,S )-ketamine administration. In line with previous studies, these results suggest that 6-week-old adult-born hippocampal neurons expressing NR2B partially modulate ( R,S )-ketamine's rapid-acting effects. Future work targeting these 6-week-old adult-born neurons may prove beneficial for increasing the efficacy of ( R , S )-ketamine's antidepressant actions.

9.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808799

RESUMO

BACKGROUND: Serotonin (5-HT) receptors and N -methyl-D-aspartate receptors (NMDARs) have both been implicated in the pathophysiology of depression and anxiety disorders. Here, we evaluated whether targeting both receptors through combined dosing of ( R , S )-ketamine, an NMDAR antagonist, and prucalopride, a serotonin type IV receptor (5-HT 4 R) agonist, would have additive effects, resulting in reductions in stress-induced fear, behavioral despair, and hyponeophagia. METHODS: A single injection of saline (Sal), ( R , S )-ketamine (K), prucalopride (P), or a combined dose of ( R , S )-ketamine and prucalopride (K+P) was administered before or after contextual fear conditioning (CFC) stress in both sexes. Drug efficacy was assayed using the forced swim test (FST), elevated plus maze (EPM), open field (OF), marble burying (MB), and novelty-suppressed feeding (NSF). Patch clamp electrophysiology was used to measure the effects of combined drug on neural activity in hippocampal CA3. c-fos and parvalbumin (PV) expression in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was examined using immunohistochemistry and network analysis. RESULTS: We found that a combination of K+P, given before or after stress, exerted additive effects, compared to either drug alone, in reducing a variety of stress-induced behaviors in both sexes. Combined K+P administration significantly altered c-fos and PV expression and network activity in the HPC and mPFC. CONCLUSIONS: Our results indicate that combined K+P has additive benefits for combating stress-induced pathophysiology, both at the behavioral and neural level. Our findings provide preliminary evidence that future clinical studies using this combined treatment strategy may prove advantageous in protecting against a broader range of stress-induced psychiatric disorders.

10.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503264

RESUMO

INTRODUCTION: Neuropsychiatric symptoms (NPS), such as depression and anxiety, are observed in 90% of Alzheimer's disease (AD) patients, two-thirds of whom are women. NPS usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brain-wide neuronal mechanisms. METHODS: To gain mechanistic insight into how anxiety impacts AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity utilizing the ArcCreERT2 x enhanced yellow fluorescent protein (eYFP) x APP/PS1 (AD) mice. The ADNI dataset was used to determine the impact of anxiety on AD progression in human subjects. RESULTS: Female AD mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control (Ctrl) mice and male mice. Brain-wide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in AD mice. Sex-specific memory trace changes were observed; female AD mice exhibited impaired memory traces in dorsal CA3 (dCA3), while male AD mice exhibited impaired memory traces in the dorsal dentate gyrus (dDG). In the ADNI dataset, anxiety predicted transition to dementia. Female subjects positive for anxiety and amyloid transitioned more quickly to dementia than male subjects. CONCLUSIONS: While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that AD network dysfunction is sexually dimorphic, and that personalized medicine may benefit male and female AD patients rather than a one size fits all approach.

11.
bioRxiv ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36909465

RESUMO

INTRODUCTION: Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization, the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS: To identify the neural ensembles mediating fear generalization, we utilized the ArcCreER T2 x enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact (CCI) model of TBI. Mice were then administered a contextual fear discrimination (CFD) paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if ( R,S )-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS: TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the DG, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, ( R,S )-ketamine facilitated fear discrimination and this behavioral improvement was reflected in DG memory trace activity. CONCLUSIONS: These data show that TBI induces fear generalization by altering fear memory traces, and that this deficit can be improved with a single injection of ( R,S )-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.

12.
Neuropharmacology ; 224: 109345, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36427554

RESUMO

Exposure to stress is one of the greatest contributing factors to developing a psychiatric disorder, particularly in susceptible populations. Enhancing resilience to stress could be a powerful intervention to reduce the incidence of psychiatric disease and reveal insight into the pathophysiology of psychiatric disorders. (R,S)-ketamine and its metabolites have recently been shown to exert protective effects when administered before or after a variety of stressors and may be effective, tractable prophylactic compounds against psychiatric disease. Drug dosing, sex, age, and strain in preclinical rodent studies, significantly influence the prophylactic effects of (R,S)-ketamine and related compounds. Due to the broad neurobiological actions of (R,S)-ketamine, a variety of mechanisms have been proposed to contribute to the resilience-enhancing effects of this drug, including altering various transcription factors across the genome, enhancing inhibitory connections from the prefrontal cortex, and increasing synaptic plasticity in the hippocampus. Promisingly, select data have shown that (R,S)-ketamine may be an effective prophylactic against psychiatric disorders, such as postpartum depression (PPD). Overall, this review will highlight a brief history of the prophylactic effects of (R,S)-ketamine, the potential mechanisms underlying its protective actions, and possible future directions for translating prophylactic compounds to the clinic. This article is part of the Special Issue on 'Ketamine and its Metabolites'.


Assuntos
Depressão Pós-Parto , Ketamina , Humanos , Feminino , Ketamina/uso terapêutico , Depressão Pós-Parto/tratamento farmacológico , Hipocampo , Córtex Pré-Frontal , Plasticidade Neuronal , Depressão/tratamento farmacológico
13.
Front Behav Neurosci ; 16: 919831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874651

RESUMO

Altered fear learning is a strong behavioral component of anxiety disorders such as post-traumatic stress disorder (PTSD). Recent efforts have attempted to combine exposure therapies with drugs that target fear memory retrieval and memory reconsolidation, in order to improve treatment efficacy. The noradrenergic (NA) signaling system is of particular interest, due to its role in regulating the stress response and its involvement in fear and learning processes. Importantly, propranolol (P), a non-selective ß-adrenergic antagonist, has shown the potential in decreasing exaggerated fear in both humans and animal models. In a previous study, we utilized an activity-dependent tagging murine model to determine the neural mechanisms by which propranolol attenuates learned fear. We found that propranolol acutely decreased memory trace reactivation specifically in the dorsal dentate gyrus (dDG), but not in CA3 or CA1. Here, we extended our previous study by investigating whether propranolol additionally altered activity in the hilus, a polymorphic layer that consists of neurons, mossy cells, and GABAergic interneurons. We found that propranolol acutely reduced overall hilar activity in both the dorsal and ventral hilus. Moreover, we report that propranolol significantly altered the activity of parvalbumin (PV)+ cells in the ventral (vDG), but not dorsal DG (dDG). Together, these results suggest that a ß-adrenergic blockade may affect the activity of excitatory and inhibitory cell types in the hilar layer of the DG, and that these alterations may contribute to manipulating fear memory traces.

14.
Front Neurosci ; 16: 852010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527817

RESUMO

(R,S)-ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that was originally developed as an anesthetic. Most recently, (R,S)-ketamine has been used as a rapid-acting antidepressant, and we have reported that (R,S)-ketamine can also be a prophylactic against stress in adult mice. However, most pre-clinical studies have been performed in adult mice. It is still unknown how an acute (R,S)-ketamine injection influences behavior across the lifespan (e.g., to adolescent or aged populations). Here, we administered saline or (R,S)-ketamine at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes. One hour later, behavioral despair, avoidance, locomotion, perseverative behavior, or contextual fear discrimination (CFD) was assessed. A separate cohort of mice was sacrificed 1 h following saline or (R,S)-ketamine administration. Brains were processed to quantify the marker of inflammation Cyclooxygenase 2 (Cox-2) expression to determine whether the acute effects of (R,S)-ketamine were partially mediated by changes in brain inflammation. Our findings show that (R,S)-ketamine reduced behavioral despair and perseverative behavior in adolescent female, but not male, mice and facilitated CFD in both sexes at specific doses. (R,S)-ketamine reduced Cox-2 expression specifically in ventral CA3 (vCA3) of male mice. Notably, (R,S)-ketamine was not effective in aged mice. These results underscore the need for sex- and age-specific approaches to test (R,S)-ketamine efficacy across the lifespan.

15.
Int J Neuropsychopharmacol ; 25(6): 512-523, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35229871

RESUMO

BACKGROUND: (R,S)-ketamine, an N-methyl-D-aspartate receptor antagonist, is frequently used as an anesthetic and as a rapid-acting antidepressant. We and others have reported that (R,S)-ketamine is prophylactic against stress in adult mice but have yet to test its efficacy in adolescent or aged populations. METHODS: Here, we administered saline or (R,S)-ketamine as a prophylactic at varying doses to adolescent (5-week-old) and aged (24-month-old) 129S6/SvEv mice of both sexes 1 week before a 3-shock contextual fear-conditioning (CFC) stressor. Following CFC, we assessed behavioral despair, avoidance, perseverative behavior, locomotion, and contextual fear discrimination. To assess whether the prophylactic effect could persist into adulthood, adolescent mice were injected with saline or varying doses of (R,S)-ketamine and administered a 3-shock CFC as a stressor 1 month later. Mice were then re-exposed to the aversive context 5 days later and administered behavioral tests as aforementioned. Brains were also processed to quantify Cyclooxygenase 2 expression as a proxy for inflammation to determine whether the prophylactic effects of (R,S)-ketamine were partially due to changes in brain inflammation. RESULTS: Our data indicate that (R,S)-ketamine is prophylactic at sex-specific doses in adolescent but not aged mice. (R,S)-ketamine attenuated learned fear and perseverative behavior in females, reduced behavioral despair in males, and facilitated contextual fear discrimination in both sexes. (R,S)-ketamine reduced Cyclooxygenase 2 expression specifically in ventral Cornu Ammonis region 3 of male mice. CONCLUSIONS: These findings demonstrate that prophylactic (R,S)-ketamine efficacy is sex, dose, and age dependent and will inform future studies investigating (R,S)-ketamine efficacy across the lifespan.


Assuntos
Ketamina , Animais , Antidepressivos/farmacologia , Ciclo-Oxigenase 2/farmacologia , Medo , Feminino , Ketamina/farmacologia , Masculino , Camundongos , Estresse Psicológico
17.
Biol Psychiatry ; 90(7): 458-472, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274107

RESUMO

BACKGROUND: Major depressive disorder is a common, recurrent illness. Recent studies have implicated the NMDA receptor in the pathophysiology of major depressive disorder. (R,S)-ketamine, an NMDA receptor antagonist, is an effective antidepressant but has numerous side effects. Here, we characterized a novel NMDA receptor antagonist, fluoroethylnormemantine (FENM), to determine its effectiveness as a prophylactic and/or antidepressant against stress-induced maladaptive behavior. METHODS: Saline, memantine (10 mg/kg), (R,S)-ketamine (30 mg/kg), or FENM (10, 20, or 30 mg/kg) was administered before or after contextual fear conditioning in 129S6/SvEv mice. Drug efficacy was assayed using various behavioral tests. Protein expression in the hippocampus was quantified with immunohistochemistry or Western blotting. In vitro radioligand binding was used to assay drug binding affinity. Patch clamp electrophysiology was used to determine the effect of drug administration on glutamatergic activity in ventral hippocampal cornu ammonis 3 (vCA3) 1 week after injection. RESULTS: Given after stress, FENM decreased behavioral despair and reduced perseverative behavior. When administered after re-exposure, FENM facilitated extinction learning. As a prophylactic, FENM attenuated learned fear and decreased stress-induced behavioral despair. FENM was behaviorally effective in both male and female mice. (R,S)-ketamine, but not FENM, increased expression of c-fos in vCA3. Both (R,S)-ketamine and FENM attenuated large-amplitude AMPA receptor-mediated bursts in vCA3, indicating a common neurobiological mechanism for further study. CONCLUSIONS: Our results indicate that FENM is a novel drug that is efficacious when administered at various times before or after stress. Future work will further characterize FENM's mechanism of action with the goal of clinical development.


Assuntos
Transtorno Depressivo Maior , Ketamina , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Feminino , Ketamina/farmacologia , Masculino , Memantina/análogos & derivados , Camundongos , Estresse Psicológico
18.
Biol Psychiatry ; 89(12): 1150-1161, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766406

RESUMO

BACKGROUND: Posttraumatic stress disorder can develop after a traumatic event and results in heightened, inappropriate fear and anxiety. Although approximately 8% of the U.S. population is affected by posttraumatic stress disorder, only two drugs have been approved by the Food and Drug Administration to treat it, both with limited efficacy. Propranolol, a nonselective ß-adrenergic antagonist, has shown efficacy in decreasing exaggerated fear, and there has been renewed interest in using it to treat fear disorders. METHODS: Here, we sought to determine the mechanisms by which propranolol attenuates fear by utilizing an activity-dependent tagging system, ArcCreERT2 x eYFP mice. 129S6/SvEv mice were administered a 4-shock contextual fear conditioning paradigm followed by immediate or delayed context reexposures. Saline or propranolol was administered either before or after the first context reexposure. To quantify hippocampal, prefrontal, and amygdalar memory traces, ArcCreERT2 x eYFP mice were administered a delayed context reexposure with either a saline or propranolol injection before context reexposure. RESULTS: Propranolol decreased fear expression only when administered before a delayed context reexposure. Fear memory traces were affected in the dorsal dentate gyrus and basolateral amygdala after propranolol administration in the ArcCreERT2 x eYFP mice. Propranolol acutely altered functional connectivity between the hippocampal, cortical, and amygdalar regions. CONCLUSIONS: These data indicate that propranolol may decrease fear expression by altering network-correlated activity and by weakening the reactivation of the initial traumatic memory trace. This work contributes to the understanding of noradrenergic drugs as therapeutic aids for patients with posttraumatic stress disorder.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Propranolol , Tonsila do Cerebelo , Animais , Medo , Humanos , Memória , Camundongos , Propranolol/farmacologia
19.
Int J Neuropsychopharmacol ; 24(6): 519-531, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-33631001

RESUMO

BACKGROUND: Memantine, a noncompetitive N-methyl-D-aspartate receptor antagonist, has been approved for use in Alzheimer's disease, but an increasing number of studies have investigated its utility for neuropsychiatric disorders. Here, we characterized a novel compound, fluoroethylnormemtantine (FENM), which was derived from memantine with an extra Fluor in an optimized position for in vivo biomarker labeling. We sought to determine if FENM produced similar behavioral effects as memantine and/or if FENM has beneficial effects against fear, avoidance, and behavioral despair. METHODS: We administered saline, FENM, or memantine prior to a number of behavioral assays, including paired-pulse inhibition, open field, light dark test, forced swim test, and cued fear conditioning in male Wistar rats. RESULTS: Unlike memantine, FENM did not produce nonspecific side effects and did not alter sensorimotor gating or locomotion. FENM decreased immobility in the forced swim test. Moreover, FENM robustly facilitated fear extinction learning when administered prior to either cued fear conditioning training or tone reexposure. CONCLUSIONS: These results suggest that FENM is a promising, novel compound that robustly reduces fear behavior and may be useful for further preclinical testing.


Assuntos
Comportamento Animal/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Memantina/análogos & derivados , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Masculino , Ratos Wistar
20.
Eur J Neurosci ; 54(8): 6795-6814, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33540466

RESUMO

PKMζ is an autonomously active PKC isoform crucial for the maintenance of synaptic long-term potentiation (LTP) and long-term memory. Unlike other kinases that are transiently stimulated by second messengers, PKMζ is persistently activated through sustained increases in protein expression of the kinase. Therefore, visualizing increases in PKMζ expression during long-term memory storage might reveal the sites of its persistent action and thus the location of memory-associated LTP maintenance in the brain. Using quantitative immunohistochemistry validated by the lack of staining in PKMζ-null mice, we examined the amount and distribution of PKMζ in subregions of the hippocampal formation of wild-type mice during LTP maintenance and spatial long-term memory storage. During LTP maintenance in hippocampal slices, PKMζ increases in the pyramidal cell body and stimulated dendritic layers of CA1 for at least 2 hr. During spatial memory storage, PKMζ increases in CA1 pyramidal cells for at least 1 month, paralleling the persistence of the memory. During the initial expression of the memory, we tagged principal cells with immediate-early gene Arc promoter-driven transcription of fluorescent proteins. The subset of memory-tagged CA1 cells selectively increases expression of PKMζ during memory storage, and the increase persists in dendritic compartments within stratum radiatum for 1 month, indicating long-term storage of information in the CA3-to-CA1 pathway. We conclude that persistent increases in PKMζ trace the molecular mechanism of LTP maintenance and thus the sites of information storage within brain circuitry during long-term memory.


Assuntos
Potenciação de Longa Duração , Proteína Quinase C , Animais , Hipocampo/metabolismo , Memória de Longo Prazo , Camundongos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Memória Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA