Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Announc ; 4(6)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27811091

RESUMO

The microalgal division Haptophyta uses a range of nutritional sourcing, including mixotrophy. The genome of a member of this taxon, Chrysochromulina tobin, suggests that interactions with its bacterial cohort are critical for C. tobin physiology. Here, we report the genomes of eight bacterial species in coculture with C. tobin.

2.
PLoS Genet ; 11(9): e1005469, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397803

RESUMO

Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼ 40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two "red" RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.


Assuntos
Aptidão Genética , Genoma/genética , Haptófitas/genética , Ribulose-Bifosfato Carboxilase/genética , Sequência de Bases , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA
3.
BMC Genomics ; 15: 604, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25034814

RESUMO

BACKGROUND: Haptophytes are widely and abundantly distributed in both marine and freshwater ecosystems. Few genomic analyses of representatives within this taxon have been reported, despite their early evolutionary origins and their prominent role in global carbon fixation. RESULTS: The complete mitochondrial and chloroplast genome sequences of the haptophyte Chrysochromulina tobin (Prymnesiales) provide insight into the architecture and gene content of haptophyte organellar genomes. The mitochondrial genome (~34 kb) encodes 21 protein coding genes and contains a complex, 9 kb tandem repeat region. Similar to other haptophytes and rhodophytes, but not cryptophytes or stramenopiles, the mitochondrial genome has lost the nad7, nad9 and nad11 genes. The ~105 kb chloroplast genome encodes 112 protein coding genes, including ycf39 which has strong structural homology to NADP-binding nitrate transcriptional regulators; a divergent 'CheY-like' two-component response regulator (ycf55) and Tic/Toc (ycf60 and ycf80) membrane transporters. Notably, a zinc finger domain has been identified in the rpl36 ribosomal protein gene of all chloroplasts sequenced to date with the exception of haptophytes and cryptophytes--algae that have gained (via lateral gene transfer) an alternative rpl36 lacking the zinc finger motif. The two C. tobin chloroplast ribosomal RNA operon spacer regions differ in tRNA content. Additionally, each ribosomal operon contains multiple single nucleotide polymorphisms (SNPs)--a pattern observed in rhodophytes and cryptophytes, but few stramenopiles. Analysis of small (<200 bp) chloroplast encoded tandem and inverted repeats in C. tobin and 78 other algal chloroplast genomes show that repeat type, size and location are correlated with gene identity and taxonomic clade. CONCLUSION: The Chrysochromulina tobin organellar genomes provide new insight into organellar function and evolution. These are the first organellar genomes to be determined for the prymnesiales, a taxon that is present in both oceanic and freshwater systems and represents major primary photosynthetic producers and contributors to global ecosystem stability.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Haptófitas/genética , Mapeamento Cromossômico , Sequência Conservada , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Fases de Leitura Aberta , Óperon , Filogenia , Sequências Repetitivas de Ácido Nucleico , Proteínas Ribossômicas/genética , Análise de Sequência de DNA , Transdução de Sinais , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA