Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Public Health ; 113(11): 1191-1200, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37651660

RESUMO

Objectives. To evaluate the potential for drinking water contamination in Los Angeles (LA) County, California, based on the proximity of supply wells to oil and gas wells, and characterize risk with respect to race/ethnicity and measures of structural racism. Methods. We identified at-risk community water systems (CWSs) as those with supply wells within 1 kilometer of an oil or gas well. We characterized sociodemographics of the populations served by each CWS by using the 2013-2017 American Community Survey. We estimated the degree of redlining in each CWS service area by using 1930s Home Owners' Loan Corporation security maps, and characterized segregation by using the Index of Concentration at the Extremes. Multivariable regression models estimated associations between these variables and CWS contamination risk. Results. A quarter of LA County CWSs serving more than 7 million residents have supply wells within 1 kilometer of an oil or gas well. Higher percentages of Hispanic, Black, and Asian/Pacific Islander residents and a greater degree of redlining and residential segregation were associated with higher contamination risk. Conclusions. Redlining and segregation predict drinking water contamination risks from oil development in LA County, with people of color at greater risk. (Am J Public Health. 2023;113(11):1191-1200. https://doi.org/10.2105/AJPH.2023.307374).


Assuntos
Água Potável , Racismo , Humanos , Campos de Petróleo e Gás , Los Angeles , Etnicidade , Poços de Água
2.
Environ Sci Technol ; 57(19): 7370-7381, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37129408

RESUMO

Sea level rise (SLR) and heavy precipitation events are increasing the frequency and extent of coastal flooding, which can trigger releases of toxic chemicals from hazardous sites, many of which are in low-income communities of color. We used regression models to estimate the association between facility flood risk and social vulnerability indicators in low-lying block groups in California. We applied dasymetric mapping techniques to refine facility boundaries and population estimates and probabilistic SLR projections to estimate facilities' future flood risk. We estimate that 423 facilities are at risk of flooding in 2100 under a high emissions scenario (RCP 8.5). One unit standard deviation increases in nonvoters, poverty rate, renters, residents of color, and linguistically isolated households were associated with a 1.5-2.2 times higher odds of the presence of an at-risk site within 1 km (ORs [95% CIs]: 2.2 [1.8, 2.8], 1.9 [1.5, 2.3], 1.7 [1.4, 1.9], 1.5 [1.2, 1.9], and 1.5 [1.2, 1.9], respectively). Among block groups near at least one at-risk site, the number of sites increased with poverty, proportion of renters and residents of color, and lower voter turnout. These results underscore the need for further research and disaster planning that addresses the differential hazards and health risks of SLR.


Assuntos
Desastres , Inundações , Elevação do Nível do Mar , Vulnerabilidade Social , California
3.
PLoS One ; 17(7): e0270746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35834564

RESUMO

This paper introduces a series of high resolution (100-meter) population grids for eight different sociodemographic variables across the state of California using data from the 2020 census. These layers constitute the 'CA-POP' dataset, and were produced using dasymetric mapping methods to downscale census block populations using fine-scale residential tax parcel boundaries and Microsoft's remotely-sensed building footprint layer as ancillary datasets. In comparison to a number of existing gridded population products, CA-POP shows good concordance and offers a number of benefits, including more recent data vintage, higher resolution, more accurate building footprint data, and in some cases more sophisticated but parsimonious and transparent dasymetric mapping methodologies. A general accuracy assessment of the CA-POP dasymetric mapping methodology was conducted by producing a population grid that was constrained by population observations within block groups instead of blocks, enabling a comparison of this grid's population apportionment to block-level census values, yielding a median absolute relative error of approximately 30% for block group-to-block apportionment. However, the final CA-POP grids are constrained by higher-resolution census block-level observations, likely making them even more accurate than these block group-constrained grids over a given region, but for which error assessments of population disaggregation is not possible due to the absence of observational data at the sub-block scale. The CA-POP grids are freely available as GeoTIFF rasters online at github.com/njdepsky/CA-POP, for total population, Hispanic/Latinx population of any race, and non-Hispanic populations for the following groups: American Indian/Alaska Native, Asian, Black/African-American, Native Hawaiian and other Pacific Islander, White, other race or multiracial (two or more races) and residents under 18 years old (i.e. minors).


Assuntos
Censos , Grupos Raciais , Adolescente , California , Hispânico ou Latino , Humanos , Havaiano Nativo ou Outro Ilhéu do Pacífico
4.
Am J Public Health ; 112(1): 88-97, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936392

RESUMO

Objectives. To evaluate universal access to clean drinking water by characterizing relationships between community sociodemographics and water contaminants in California domestic well areas (DWAs) and community water systems (CWSs). Methods. We integrated domestic well locations, CWS service boundaries, residential parcels, building footprints, and 2013-2017 American Community Survey data to estimate sociodemographic characteristics for DWAs and CWSs statewide. We derived mean drinking and groundwater contaminant concentrations of arsenic, nitrate, and hexavalent chromium (Cr[VI]) between 2011 and 2019 and used multivariate models to estimate relationships between sociodemographic variables and contaminant concentrations. Results. We estimated that more than 1.3 million Californians (3.4%) use domestic wells and more than 370 000 Californians rely on drinking water with average contaminant concentrations at or above regulatory standards for 1 or more of the contaminants considered. Higher proportions of people of color were associated with greater drinking water contamination. Conclusions. Poor water quality disproportionately impacts communities of color in California, with the highest estimated arsenic, nitrate, and Cr(VI) concentrations in areas of domestic well use. Domestic well communities must be included in efforts to achieve California's Human Right to Water. (Am J Public Health. 2022;112(1):88-97. https://doi.org/10.2105/AJPH.2021.306561).


Assuntos
Água Potável/química , Fatores Sociodemográficos , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Abastecimento de Água , Poços de Água , Arsênio/análise , California/epidemiologia , Cromo/análise , Humanos , Nitratos/análise , Características de Residência , Determinantes Sociais da Saúde
5.
Environ Sci Technol ; 55(21): 14746-14757, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668703

RESUMO

Methane superemitters emit non-methane copollutants that are harmful to human health. Yet, no prior studies have assessed disparities in exposure to methane superemitters with respect to race/ethnicity, socioeconomic status, and civic engagement. To do so, we obtained the location, category (e.g., landfill, refinery), and emission rate of California methane superemitters from Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) flights conducted between 2016 and 2018. We identified block groups within 2 km of superemitters (exposed) and 5-10 km away (unexposed) using dasymetric mapping and assigned level of exposure among block groups within 2 km (measured via number of superemitter categories and total methane emissions). Analyses included 483 superemitters. The majority were dairy/manure (n = 213) and oil/gas production sites (n = 127). Results from fully adjusted logistic mixed models indicate environmental injustice in methane superemitter locations. For example, for every 10% increase in non-Hispanic Black residents, the odds of exposure increased by 10% (95% confidence interval (CI): 1.04, 1.17). We observed similar disparities for Hispanics and Native Americans but not with indicators of socioeconomic status. Among block groups located within 2 km, increasing proportions of non-White populations and lower voter turnout were associated with higher superemitter emission intensity. Previously unrecognized racial/ethnic disparities in exposure to California methane superemitters should be considered in policies to tackle methane emissions.


Assuntos
Metano , Justiça Social , California , Etnicidade , Hispânico ou Latino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA