Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Blood Adv ; 8(14): 3798-3809, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38805575

RESUMO

ABSTRACT: Fibrinolytics delivered into the general circulation lack selectivity for nascent thrombi, reducing efficacy and increasing the risk of bleeding. Urokinase-type plasminogen activator (uPA) transgenically expressed within murine platelets provided targeted thromboprophylaxis without causing bleeding but is not clinically feasible. Recent advances in generating megakaryocytes prompted us to develop a potentially clinically relevant means to produce "antithrombotic" platelets from CD34+ hematopoietic stem cell-derived in vitro-grown megakaryocytes. CD34+ megakaryocytes internalize and store in alpha granules (α-granules) single-chain uPA (scuPA) and a plasmin-resistant thrombin-activatable variant (uPAT). Both uPAs colocalized with internalized factor V (FV), fibrinogen and plasminogen, low-density lipoprotein receptor-related protein 1 (LRP1), and interferon-induced transmembrane protein 3, but not with endogenous von Willebrand factor (VWF). Endocytosis of uPA by CD34+ megakaryocytes was mediated, in part, via LRP1 and αIIbß3. scuPA-containing megakaryocytes degraded endocytosed intragranular FV but not endogenous VWF in the presence of internalized plasminogen, whereas uPAT-megakaryocytes did not significantly degrade either protein. We used a carotid artery injury model in nonobese diabetic-severe combined immunodeficiency IL2rγnull (NSG) mice homozygous for VWFR1326H (a mutation switching binding VWF specificity from mouse to human glycoprotein Ibα) to test whether platelets derived from scuPA- or uPAT-megakaryocytes would prevent thrombus formation. NSG/VWFR1326H mice exhibited a lower thrombotic burden after carotid artery injury compared with NSG mice unless infused with human platelets or megakaryocytes, whereas intravenous injection of uPA-megakaryocytes generated sufficient uPA-containing human platelets to lyse nascent thrombi. These studies describe the use of in vitro-generated megakaryocytes as a potential platform for delivering uPA or other ectopic proteins within platelet α-granules to sites of vascular injury.


Assuntos
Megacariócitos , Ativador de Plasminogênio Tipo Uroquinase , Megacariócitos/metabolismo , Megacariócitos/citologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Humanos , Animais , Camundongos , Fibrinólise/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Plaquetas/metabolismo , Trombose/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Grânulos Citoplasmáticos/metabolismo , Antígenos CD34/metabolismo
2.
Biol Open ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494647

RESUMO

Ex vivo, gene therapy is a powerful approach holding great promises for the treatment of both genetic and acquired diseases. Adeno-associated virus (AAV) vectors are a safe and efficient delivery system for modification of mesenchymal stem cells (MSC) that could maximize their therapeutic benefits. Assessment of MSC viability and functional activity after infection with new AAV serotypes is necessary, due to AAV tropism to specific cell types. We infected human and rat adipose-tissue MSC with hybrid AAV-DJ serotype vectors carrying GFP and SCF genes. GFP expression from AAV-DJ was about 1.5-fold superior to that observed with AAV-2 and lasted for at least 21 days as was evaluated by flow cytometry and fluorescence microscopy. AAV-DJ proves to be suitable for the infection of rat and human MSC with a similar efficiency. Infected MSC were still viable but showed a 25-30% growth-rate slowdown. Moreover, we found an increase of SERPINB2 mRNA expression in human MSC while expression of other oxidative stress markers and extracellular matrix proteins was not affected. These results suggest that there is a differential cellular response in MSC infected with AAV viral vectors, which should be taken into account as it can affect the expected outcome for the therapeutic application.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/sangue , Células-Tronco Mesenquimais/virologia , Proteínas Virais/sangue , Animais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ratos , Sorogrupo , Fator de Células-Tronco/metabolismo , Tropismo Viral/genética
3.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339427

RESUMO

Cell therapy of the post-infarcted myocardium is still far from clinical use. Poor survival of transplanted cells, insufficient regeneration, and replacement of the damaged tissue limit the potential of currently available cell-based techniques. In this study, we generated a multilayered construct from adipose-derived mesenchymal stromal cells (MSCs) modified to secrete stem cell factor, SCF. In a rat model of myocardium infarction, we show that transplantation of SCF producing cell sheet induced activation of the epicardium and promoted the accumulation of c-kit positive cells in ischemic muscle. Morphometry showed the reduction of infarct size (16%) and a left ventricle expansion index (0.12) in the treatment group compared to controls (24-28%; 0.17-0.32). The ratio of viable myocardium was more than 1.5-fold higher, reaching 49% compared to the control (28%) or unmodified cell sheet group (30%). Finally, by day 30 after myocardium infarction, SCF-producing cell sheet transplantation increased left ventricle ejection fraction from 37% in the control sham-operated group to 53%. Our results suggest that, combining the genetic modification of MSCs and their assembly into a multilayered construct, we can provide prolonged pleiotropic effects to the damaged heart, induce endogenous regenerative processes, and improve cardiac function.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Infarto do Miocárdio/terapia , Pericárdio/metabolismo , Fator de Células-Tronco/metabolismo , Tecido Adiposo/citologia , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Pericárdio/fisiologia , Ratos , Ratos Wistar , Regeneração , Fator de Células-Tronco/genética
4.
Int J Mol Sci ; 20(12)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238604

RESUMO

Cell therapy remains a promising approach for the treatment of cardiovascular diseases. In this regard, the contemporary trend is the development of methods to overcome low cell viability and enhance their regenerative potential. In the present study, we evaluated the therapeutic potential of gene-modified adipose-derived stromal cells (ADSC) that overexpress hepatocyte growth factor (HGF) in a mice hind limb ischemia model. Angiogenic and neuroprotective effects were assessed following ADSC transplantation in suspension or in the form of cell sheet. We found superior blood flow restoration, tissue vascularization and innervation, and fibrosis reduction after transplantation of HGF-producing ADSC sheet compared to other groups. We suggest that the observed effects are determined by pleiotropic effects of HGF, along with the multifactorial paracrine action of ADSC which remain viable and functionally active within the engineered cell construct. Thus, we demonstrated the high therapeutic potential of the utilized approach for skeletal muscle recovery after ischemic damage associated with complex tissue degenerative effects.


Assuntos
Tecido Adiposo/citologia , Fator de Crescimento de Hepatócito/biossíntese , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Células Estromais/metabolismo , Células Estromais/transplante , Animais , Técnicas de Cultura de Células , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Humanos , Isquemia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Crescimento Neuronal/efeitos dos fármacos
5.
PLoS One ; 13(5): e0197566, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29787588

RESUMO

Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice. Thus, combined methods using delivery of several angiogenic factors got into spotlight as a way to improve outcomes. This study provides experimental proof of concept for a combined approach using simultaneous delivery of VEGF165 and HGF genes to alleviate consequences of myocardial infarction (MI). However, recent studies suggested that angiogenic growth factors have pleiotropic effects that may contribute to outcome so we expanded focus of our work to investigate potential mechanisms underlying action of VEGF165, HGF and their combination in MI. Briefly, Wistar rats underwent coronary artery ligation followed by injection of plasmid bearing VEGF165 or HGF or mixture of these. Histological assessment showed decreased size of post-MI fibrosis in both-VEGF165- or HGF-treated animals yet most prominent reduction of collagen deposition was observed in VEGF165+HGF group. Combined delivery group rats were the only to show significant increase of left ventricle (LV) wall thickness. We also found dilatation index improved in HGF or VEGF165+HGF treated animals. These effects were partially supported by our findings of c-kit+ cardiac stem cell number increase in all treated animals compared to negative control. Sporadic Ki-67+ mature cardiomyocytes were found in peri-infarct area throughout study groups with comparable effects of VEGF165, HGF and their combination. Assessment of vascular density in peri-infarct area showed efficacy of both-VEGF165 and HGF while combination of growth factors showed maximum increase of CD31+ capillary density. To our surprise arteriogenic response was limited in HGF-treated animals while VEGF165 showed potent positive influence on a-SMA+ blood vessel density. The latter hinted to evaluate infiltration of monocytes as they are known to modulate arteriogenic response in myocardium. We found that monocyte infiltration was driven by VEGF165 and reduced by HGF resulting in alleviation of VEGF-stimulated monocyte taxis after combined delivery of these 2 factors. Changes of monocyte infiltration were concordant with a-SMA+ arteriole density so we tested influence of VEGF165 or HGF on endothelial cells (EC) that mediate angiogenesis and inflammatory response. In a series of in vitro experiments we found that VEGF165 and HGF regulate production of inflammatory chemokines by human EC. In particular MCP-1 levels changed after treatment by recombinant VEGF, HGF or their combination and were concordant with NF-κB activation and monocyte infiltration in corresponding groups in vivo. We also found that both-VEGF165 and HGF upregulated IL-8 production by EC while their combination showed additive type of response reaching peak values. These changes were HIF-2 dependent and siRNA-mediated knockdown of HIF-2α abolished effects of VEGF165 and HGF on IL-8 production. To conclude, our study supports combined gene therapy by VEGF165 and HGF to treat MI and highlights neglected role of pleiotropic effects of angiogenic growth factors that may define efficacy via regulation of inflammatory response and endothelial function.


Assuntos
Terapia Genética/métodos , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/uso terapêutico , Infarto do Miocárdio/terapia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Quimiocina CCL2/biossíntese , Modelos Animais de Doenças , Expressão Gênica , Fator de Crescimento de Hepatócito/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-8/biossíntese , Masculino , Monócitos/metabolismo , Monócitos/patologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Biol Chem ; 292(50): 20528-20543, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28972182

RESUMO

Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin-positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAM's molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.


Assuntos
Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Linfangioleiomiomatose/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Angiomiolipoma/tratamento farmacológico , Angiomiolipoma/genética , Angiomiolipoma/metabolismo , Angiomiolipoma/patologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Interferência de RNA , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Carga Tumoral/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/genética
7.
Tissue Cell ; 49(1): 64-71, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28041835

RESUMO

Cell sheets (CS) from c-kit+ cardiac stem cell (CSC) hold a potential for application in regenerative medicine. However, manufacture of CS may require thermoresponsive dishes, which increases cost and puts one in dependence on specific materials. Alternative approaches were established recently and we conducted a short study to compare approaches for detachment of CS from c-kit+ CSC. Our in-house developed method using chelation by Versene solution was compared to UpCell™ thermoresponsive plates in terms of CSC proliferation, viability, gap junction formation and engraftment in a model of myocardial infarction. Use of Versene solution instead of thermoresponsive dishes resulted in comparable CS thickness (approximately 100mcm), cell proliferation rate and no signs of apoptosis detected in both types of constructs. However, we observed a minor reduction of gap junction count in Versene-treated CS. At day 30 after delivery to infarcted myocardium both types of CS retained at the site of transplantation and contained comparable amounts of proliferating cells indicating engraftment. Thus, we may conclude that detachment of CS from c-kit+ CSC using Versene solution followed by mechanical treatment is an alternative to thermoresponsive plates allowing use of routinely available materials to generate constructs for cardiac repair.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Animais , Apoptose/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Edético/farmacologia , Junções Comunicantes/efeitos dos fármacos , Humanos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Ratos , Medicina Regenerativa , Células-Tronco/efeitos dos fármacos
8.
J Cell Biochem ; 117(1): 180-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26096299

RESUMO

Tissue regeneration requires coordinated "teamwork" of growth factors, proteases, progenitor and immune cells producing inflammatory cytokines. Mesenchymal stem cells (MSC) might play a pivotal role by substituting cells or by secretion of growth factors or cytokines, and attraction of progenitor and inflammatory cells, which participate in initial stages of tissue repair. Due to obvious impact of inflammation on regeneration it seems promising to explore whether inflammatory factors could influence proangiogenic abilities of MSC. In this study we investigated effects of TNF-α on activity of adipose-derived stem cells (ADSC). We found that treatment with TNF-α enhances ADSC proliferation, F-actin microfilament assembly, increases cell motility and migration through extracellular matrix. Exposure of ADSC to TNF-α led to increased mRNA expression of proangiogenic factors (FGF-2, VEGF, IL-8, and MCP-1), inflammatory cytokines (IL-1ß, IL-6), proteases (MMPs, uPA) and adhesion molecule ICAM-1. At the protein level, VEGF, IL-8, MCP-1, and ICAM-1 production was also up-regulated. Pre-incubation of ADSC with TNF-α-enhanced adhesion of monocytes to ADSC but suppressed adherence of ADSC to endothelial cells (HUVEC). Stimulation with TNF-α triggers ROS generation and activates a number of key intracellular signaling mediators known to positively regulate angiogenesis (Akt, small GTPase Rac1, ERK1/2, and p38 MAP-kinases). Pre-treatment with TNF-α-enhanced ADSC ability to promote growth of microvessels in a fibrin gel assay and accelerate blood flow recovery, which was accompanied by increased arteriole density and reduction of necrosis in mouse hind limb ischemia model. These findings indicate that TNF-α plays a role in activation of ADSC angiogenic and regenerative potential.


Assuntos
Tecido Adiposo/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Actinas/metabolismo , Tecido Adiposo/metabolismo , Adulto , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco/efeitos dos fármacos , Adulto Jovem
9.
Stem Cell Res Ther ; 6: 204, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26503601

RESUMO

INTRODUCTION: Cell therapy using adipose-derived stromal cells (ADSC) is an intensively developing approach to promote angiogenesis and regeneration. Administration technique is crucial and among others minimal constructs - cell sheets (CS) have certain advantages. Delivery of CS allows transplantation of cells along with matrix proteins to facilitate engraftment. Cells' therapeutic potential can be also increased by expression of proangiogenic factors by viral transduction. In this work we report on therapeutic efficacy of CS from mouse ADSC transduced to express human vascular endothelial growth factor 165 a/a isoform (VEGF165), which showed potency to restore perfusion and protect tissue in a model of limb ischemia. METHODS: Mouse ADSC (mADSC) isolated from C57 male mice were expanded for CS formation (10(6)cells per CS). Constructs were transduced to express human VEGF165 by baculoviral (BV) system. CS were transplanted subcutaneously to mice with surgically induced limb ischemia and followed by laser Doppler perfusion measurements. At endpoint animals were sacrificed and skeletal muscle was evaluated for necrosis and vessel density; CS with underlying muscle was stained for apoptosis, proliferation, monocytes and blood vessels. RESULTS: Using BV system and sodium butyrate treatment we expressed human VEGF165 in mADSC (production of VEGF165 reached ≈ 25-27 ng/ml/10(5) cells) and optimized conditions to ensure cells' viability after transduction. Implantation of mock-transduced CS resulted in significant improvement of limb perfusion, increased capillary density and necrosis reduction at 2 weeks post-surgery compared to untreated animals. Additional improvement of blood flow and angiogenesis was observed after transplantation of VEGF165-expressing CS indicating enhanced therapeutic potential of genetically modified constructs. Moreover, we found delivery of mADSC as CS to be superior to equivalent dose of suspended cells in terms of perfusion and angiogenesis. Histology analysis of extracted CS detected limited proliferation and approximately 10 % prevalence of apoptosis in transplanted mADSC. Significant vascularization of CS and infiltration by monocytes were found in both - BV-transduced and control CS indicating graft and host interaction after transplantation. CONCLUSIONS: Delivery of ADSC by subcutaneous transplantation of CS is effective for stimulation of angiogenesis and tissue protection in limb ischemia with a potential for efficacy improvement by BV transduction to express VEGF165.


Assuntos
Isquemia/terapia , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Transplante de Células-Tronco , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Apoptose , Baculoviridae/genética , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Membro Posterior/irrigação sanguínea , Masculino , Camundongos Endogâmicos C57BL , Microvasos/fisiologia , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Miosite/prevenção & controle , Necrose/prevenção & controle , Fluxo Sanguíneo Regional , Gordura Subcutânea/patologia , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA