Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Cancer ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703351

RESUMO

A diagnosis of brain metastasis (BM) significantly affects quality of life in patients with metastatic renal cell cancer (mRCC). Although systemic treatments have shown efficacy in mRCC, active surveillance (AS) is still commonly used in clinical practice. In this single-center cohort study, we assessed the impact of different initial treatment strategies for metastatic RCC (mRCC) on the development of BM. All consecutive patients diagnosed with mRCC between 2011 and 2022 were included at the Erasmus MC Cancer Institute, the Netherlands, and a subgroup of patients with BM was selected. In total, 381 patients with mRCC (ECM, BM, or both) were identified. Forty-six patients had BM of whom 39 had metachronous BM (diagnosed ≥1 month after ECM). Twenty-five (64.1%) of these 39 patients with metachronous BM had received prior systemic treatment for ECM and 14 (35.9%) patients were treatment naive at BM diagnosis. The median BM-free survival since ECM diagnosis was significantly longer (p = .02) in previously treated patients (29.0 [IQR 12.6-57.0] months) compared to treatment naive patients (6.8 [IQR 1.0-7.0] months). In conclusion, patients with mRCC who received systemic treatment for ECM prior to BM diagnosis had a longer BM-free survival as compared to treatment naïve patients. These results emphasize the need for careful evaluation of treatment strategies, and especially AS, for patients with mRCC.

2.
Eur Radiol Exp ; 7(1): 78, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066225

RESUMO

BACKGROUND: Dynamic glucose-enhanced (DGE) chemical exchange saturation transfer (CEST) has the potential to characterize glucose metabolism in brain metastases. Since the effect size of DGE CEST is small at 3 T (< 1%), measurements of signal-to-noise ratios are challenging. To improve DGE detection, we developed an acquisition pipeline and extended image analysis for DGE CEST on a hybrid 3-T positron emission tomography/magnetic resonance imaging system. METHODS: This cross-sectional study was conducted after local ethical approval. Static Z-spectra (from -100 to 100 ppm) were acquired to compare the use of 1.2 versus 2 ppm to calculate static glucose-enhanced (glucoCEST) maps in 10 healthy volunteers before and after glucose infusion. Dynamic CEST images were acquired during glucose infusion. Image analysis was optimized using motion correction, dynamic B0 correction, and principal component analysis (PCA) to improve the detection of DGE CEST in the sagittal sinus, cerebrospinal fluid, and grey and white matter. The developed DGE CEST pipeline was applied to four patients diagnosed with brain metastases. RESULTS: GlucoCEST was strongest in healthy tissues at 2 ppm. Correcting for motion, B0, and use of PCA locally improved DGE maps. A larger contrast between healthy tissues and enhancing regions in brain metastases was found when dynamic B0 correction and PCA denoising were applied. CONCLUSION: We demonstrated the feasibility of DGE CEST with our developed acquisition and analysis pipeline at 3 T in patients with brain metastases. This work enables a direct comparison of DGE CEST to 18F-fluoro-deoxy-D-glucose positron emission tomography of glucose metabolism in patients with brain metastases. RELEVANCE STATEMENT: Contrast between brain metastasis and healthy brain tissue in DGE CEST MR images is improved by including principle component analysis and dynamic magnetic field correction during postprocessing. This approach enables the detection of increased DGE CEST signal in brain metastasis, if present. KEY POINTS: • Despite the low signal-to-noise ratio, dynamic glucose-enhanced CEST MRI is feasible at 3 T. • Principal component analyses and dynamic magnetic field correction improve DGE CEST MRI. • DGE CEST MRI does not consequently show changes in brain metastases compared to healthy brain tissue. • Increased DGE CEST MRI in brain metastases, if present, shows overlap with contrast enhancement on T1-weighted images.


Assuntos
Neoplasias Encefálicas , Glucose , Humanos , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
3.
Sci Rep ; 13(1): 18115, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872418

RESUMO

Amide proton transfer (APT)-weighted chemical exchange saturation transfer (CEST) imaging is a recent MRI technique making its way into clinical application. In this work, we investigated whether APT-weighted CEST imaging can provide reproducible measurements across scan sessions and scanners. Within-session, between-session and between scanner reproducibility was calculated for 19 healthy volunteers and 7 patients with a brain tumor on two 3T MRI scanners. The APT-weighted CEST effect was evaluated by calculating the Lorentzian Difference (LD), magnetization transfer ratio asymmetry (MTRasym), and relaxation-compensated inverse magnetization transfer ratio (MTRREX) averaged in whole brain white matter (WM), enhancing tumor and necrosis. Within subject coefficient of variation (COV) calculations, Bland-Altman plots and mixed effect modeling were performed to assess the repeatability and reproducibility of averaged values. The group median COVs of LD APT were 0.56% (N = 19), 0.84% (N = 6), 0.80% (N = 9) in WM within-session, between-session and between-scanner respectively. The between-session COV of LD APT in enhancing tumor (N = 6) and necrotic core (N = 3) were 4.57% and 5.67%, respectively. There were no significant differences in within session, between session and between scanner comparisons of the APT effect. The COVs of LD and MTRREX were consistently lower than MTRasym in all experiments, both in healthy tissues and tumor. The repeatability and reproducibility of APT-weighted CEST was clinically acceptable across scan sessions and scanners. Although MTRasym is simple to acquire and compute and sufficient to provide robust measurement, it is beneficial to include LD and MTRREX to obtain higher reproducibility for detecting minor signal difference in different tissue types.


Assuntos
Neoplasias Encefálicas , Prótons , Humanos , Amidas , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos
4.
Cancers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900253

RESUMO

BACKGROUND: Melanoma brain metastasis (MBM) is associated with poor outcome, but targeted therapies (TTs) and immune checkpoint inhibitors (ICIs) have revolutionized treatment over the past decade. We assessed the impact of these treatments in a real-world setting. METHODS: A single-center cohort study was performed at a large, tertiary referral center for melanoma (Erasmus MC, Rotterdam, the Netherlands). Overall survival (OS) was assessed before and after 2015, after which TTs and ICIs were increasingly prescribed. RESULTS: There were 430 patients with MBM included; 152 pre-2015 and 278 post-2015. Median OS improved from 4.4 to 6.9 months (HR 0.67, p < 0.001) after 2015. TTs and ICIs prior to MBM diagnosis were associated with poorer median OS as compared to no prior systemic treatment (TTs: 2.0 vs. 10.9 and ICIs: 4.2 vs. 7.9 months, p < 0.001). ICIs directly after MBM diagnosis were associated with improved median OS as compared to no direct ICIs (21.5 vs. 4.2 months, p < 0.001). Stereotactic radiotherapy (SRT; HR 0.49, p = 0.013) and ICIs (HR 0.32, p < 0.001) were independently associated with improved OS. CONCLUSION: After 2015, OS significantly improved for patients with MBM, especially with SRT and ICIs. Demonstrating a large survival benefit, ICIs should be considered first after MBM diagnosis, if clinically feasible.

5.
Br J Radiol ; 95(1130): 20210944, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808072

RESUMO

Imaging of brain metastases (BMs) has advanced greatly over the past decade. In this review, we discuss the main challenges that BMs pose in clinical practice and describe the role of imaging.Firstly, we describe the increased incidence of BMs of different primary tumours and the rationale for screening. A challenge lies in selecting the right patients for screening: not all cancer patients develop BMs in their disease course.Secondly, we discuss the imaging techniques to detect BMs. A three-dimensional (3D) T1W MRI sequence is the golden standard for BM detection, but additional anatomical (susceptibility weighted imaging, diffusion weighted imaging), functional (perfusion MRI) and metabolic (MR spectroscopy, positron emission tomography) information can help to differentiate BMs from other intracranial aetiologies.Thirdly, we describe the role of imaging before, during and after treatment of BMs. For surgical resection, imaging is used to select surgical patients, but also to assist intraoperatively (neuronavigation, fluorescence-guided surgery, ultrasound). For treatment planning of stereotactic radiosurgery, MRI is combined with CT. For surveillance after both local and systemic therapies, conventional MRI is used. However, advanced imaging is increasingly performed to distinguish true tumour progression from pseudoprogression.FInally, future perspectives are discussed, including radiomics, new biomarkers, new endogenous contrast agents and theranostics.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Progressão da Doença , Humanos , Incidência , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Neuronavegação , Seleção de Pacientes , Tomografia por Emissão de Pósitrons , Radiocirurgia/métodos , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia de Intervenção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA