Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
ISME Commun ; 4(1): ycae033, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38774131

RESUMO

Iron fortification to prevent anemia in African infants increases colonic iron levels, favoring the growth of enteropathogens. The use of prebiotics may be an effective strategy to reduce these detrimental effects. Using the African infant PolyFermS gut model, we compared the effect of the prebiotics short-chain galacto- with long-chain fructo-oligosaccharides (scGOS/lcFOS) and native inulin, and the emerging prebiotic acacia gum, a branched-polysaccharide-protein complex consisting of arabinose and galactose, during iron supplementation on four Kenyan infant gut microbiota. Iron supplementation did not alter the microbiota but promoted Clostridioides difficile in one microbiota. The prebiotic effect of scGOS/lcFOS and inulin was confirmed during iron supplementation in all investigated Kenyan infant gut microbiota, leading to higher abundance of bifidobacteria, increased production of acetate, propionate, and butyrate, and a significant shift in microbiota composition compared to non-supplemented microbiota. The abundance of the pathogens Clostridium difficile and Clostridium perfringens was also inhibited upon addition of the prebiotic fibers. Acacia gum had no effect on any of the microbiota. In conclusion, scGOS/lcFOS and inulin, but not acacia gum, showed a donor-independent strong prebiotic potential in Kenyan infant gut microbiota. This study demonstrates the relevance of comparing fibers in vitro prior to clinical studies.

2.
Am J Clin Nutr ; 119(2): 456-469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042412

RESUMO

BACKGROUND: Iron fortificants tend to be poorly absorbed and may adversely affect the gut, especially in African children. OBJECTIVE: We assessed the effects of prebiotic galacto-oligosaccharides/fructo-oligosaccharides (GOS/FOS) on iron absorption and gut health when added to iron-fortified infant cereal. METHODS: We randomly assigned Kenyan infants (n = 191) to receive daily for 3 wk a cereal containing iron and 7.5 g GOS/FOS (7.5 g+iron group), 3 g (3-g+iron group) GOS/FOS, or no prebiotics (iron group). A subset of infants in the 2 prebiotic+iron groups (n = 66) consumed 4 stable iron isotope-labeled test meals without and with prebiotics, both before and after the intervention. Primary outcome was fractional iron absorption (FIA) from the cereal with or without prebiotics regardless of dose, before and after 3 wk of consumption. Secondary outcomes included fecal gut microbiota, iron and inflammation status, and effects of prebiotic dose. RESULTS: Median (25th-75th percentiles) FIAs from meals before intervention were as follows: 16.3% (8.0%-27.6%) without prebiotics compared with 20.5% (10.4%-33.4%) with prebiotics (Cohen d = 0.53; P < 0.001). FIA from the meal consumed without prebiotics after intervention was 22.9% (8.5%-32.4%), 41% higher than from the meal without prebiotics before intervention (Cohen d = 0.36; P = 0.002). FIA from the meal consumed with prebiotics after intervention was 26.0% (12.2%-36.1%), 60% higher than from the meal without prebiotics before intervention (Cohen d = 0.45; P = 0.007). After 3 wk, compared with the iron group, the following results were observed: 1) Lactobacillus sp. abundances were higher in both prebiotic+iron groups (P < 0.05); 2) Enterobacteriaceae sp. abundances (P = 0.022) and the sum of pathogens (P < 0.001) were lower in the 7.5-g+iron group; 3) the abundance of bacterial toxin-encoding genes was lower in the 3-g+iron group (false discovery rate < 0.05); 4) fecal pH (P < 0.001) and calprotectin (P = 0.033) were lower in the 7.5-g+iron group. CONCLUSIONS: Adding prebiotics to iron-fortified infant cereal increases iron absorption and reduces the adverse effects of iron on the gut microbiome and inflammation in Kenyan infants. This trial was registered at clinicaltrials.gov as NCT03894358.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Microbioma Gastrointestinal , Humanos , Lactente , Inflamação , Ferro , Isótopos de Ferro , Isótopos , Quênia , Oligossacarídeos/farmacologia , Prebióticos
3.
Microbiome Res Rep ; 2(2): 9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047280

RESUMO

Aim: The human gut Bifidobacterium community has been studied in detail in infants and following dietary interventions in adults. However, the variability of the distribution of Bifidobacterium species and intra-species functions have been little studied, particularly beyond infancy. Here, we explore the ecology of Bifidobacterium communities in a large public dataset of human gut metagenomes, mostly corresponding to adults. Methods: We selected 9.515 unique gut metagenomes from curatedMetagenomicData. Samples were partitioned by applying Dirichlet's multinomial mixture to Bifidobacterium species. A functional analysis was performed on > 2.000 human-associated Bifidobacterium metagenome-assembled genomes (MAGs) paired with participant gut microbiome and health features. Results: We identified several Bifidobacterium-based partitions in the human gut microbiome differing in terms of the presence and abundance of Bifidobacterium species. The partitions enriched in both B. longum and B. adolescentis were associated with gut microbiome diversity and a higher abundance of butyrate producers and were more prevalent in healthy individuals. B. bifidum MAGs harboring a set of genes potentially related to phages were more prevalent in partitions associated with a lower gut microbiome diversity and were genetically more closely related. Conclusion: This study expands our knowledge of the ecology and variability of the Bifidobacterium community, particularly in adults, and its specific association with the gut microbiota and health. Its findings may guide the rational selection of Bifidobacterium strains for gut microbiome complementation according to the individual's endogenous Bifidobacterium community. Our results also suggest that gut microbiome stratification for particular genera may be relevant for studies of variations of species and associations with the gut microbiome and health.

4.
Nat Commun ; 14(1): 3310, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339957

RESUMO

The gut microbiome is important for human health, yet modulation requires more insight into inter-individual variation. Here, we explored latent structures of the human gut microbiome across the human lifespan, applying partitioning, pseudotime, and ordination approaches to >35,000 samples. Specifically, three major gut microbiome branches were identified, within which multiple partitions were observed in adulthood, with differential abundances of species along branches. Different compositions and metabolic functions characterized the branches' tips, reflecting ecological differences. An unsupervised network analysis from longitudinal data from 745 individuals showed that partitions exhibited connected gut microbiome states rather than over-partitioning. Stability in the Bacteroides-enriched branch was associated with specific ratios of Faecalibacterium:Bacteroides. We also showed that associations with factors (intrinsic and extrinsic) could be generic, branch- or partition-specific. Our ecological framework for cross-sectional and longitudinal data allows a better understanding of overall variation in the human gut microbiome and disentangles factors associated with specific configurations.


Assuntos
Microbioma Gastrointestinal , Humanos , Estudos Transversais , Bacteroides/genética , RNA Ribossômico 16S/genética
5.
Sci Rep ; 13(1): 6114, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059733

RESUMO

Most lactobacilli produce extracellular polysaccharides that are considered to contribute to the probiotic effect of many strains. Lacticaseibacillus rhamnosus CNCM I-3690 is an anti-inflammatory strain able to counterbalance gut barrier dysfunction. In this study ten spontaneous variants of CNCM I-3690 with different EPS-production were generated and characterized by their ropy phenotype, the quantification of the secreted EPS and genetic analysis. Amongst them, two were further analysed in vitro and in vivo: an EPS over-producer (7292) and a low-producer derivative of 7292 (7358, with similar EPS levels than the wild type (WT) strain). Our results showed that 7292 does not have anti-inflammatory profile in vitro, and lost the capacity to adhere to the colonic epithelial cells as well as the protective effect on the permeability. Finally, 7292 lost the protective effects of the WT strain in a murine model of gut dysfunction. Notably, strain 7292 was unable to stimulate goblet cell mucus production and colonic IL-10 production, all key features for the beneficial effect of the WT strain. Furthermore, transcriptome analysis of colonic samples from 7292-treated mice showed a down-regulation of anti-inflammatory genes. Altogether, our results point out that the increase of EPS production in CNCM I-3690 impairs its protective effects and highlight the importance of the correct EPS synthesis for the beneficial effects of this strain.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Animais , Camundongos , Lacticaseibacillus , Lactobacillus , Células Caliciformes , Anti-Inflamatórios , Polissacarídeos Bacterianos/farmacologia
6.
Gut Microbes ; 15(1): 2178793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794816

RESUMO

The gut microbiota evolves rapidly after birth, responding dynamically to environmental factors and playing a key role in short- and long-term health. Lifestyle and rurality have been shown to contribute to differences in the gut microbiome, including Bifidobacterium levels, between infants. We studied the composition, function and variability of the gut microbiomes of 6- to 11-month-old Kenyan infants (n = 105). Shotgun metagenomics showed Bifidobacterium longum to be the dominant species. A pangenomic analysis of B. longum in gut metagenomes revealed a high prevalence of B. longum subsp. infantis (B. infantis) in Kenyan infants (80%), and possible co-existence of this subspecies with B. longum subsp. longum. Stratification of the gut microbiome into community (GMC) types revealed differences in composition and functional features. GMC types with a higher prevalence of B. infantis and abundance of B. breve also had a lower pH and a lower abundance of genes encoding pathogenic features. An analysis of human milk oligosaccharides (HMOs) classified the human milk (HM) samples into four groups defined on the basis of secretor and Lewis polymorphisms revealed a higher prevalence of HM group III (Se+, Le-) (22%) than in most previously studied populations, with an enrichment in 2'-fucosyllactose. Our results show that the gut microbiome of partially breastfed Kenyan infants over the age of six months is enriched in bacteria from the Bifidobacterium community, including B. infantis, and that the high prevalence of a specific HM group may indicate a specific HMO-gut microbiome association. This study sheds light on gut microbiome variation in an understudied population with limited exposure to modern microbiome-altering factors.


Assuntos
Microbioma Gastrointestinal , Leite Humano , Humanos , Lactente , Leite Humano/química , Microbioma Gastrointestinal/genética , Quênia/epidemiologia , Oligossacarídeos , Bifidobacterium/genética
7.
Gut Microbes ; 14(1): 2094664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35916669

RESUMO

Probiotics have been used for decades to alleviate the negative side-effects of oral antibiotics, but our mechanistic understanding on how they work is so far incomplete. Here, we performed a metagenomic analysis of the fecal microbiota in participants who underwent a 14-d Helicobacter pylori eradication therapy with or without consumption of a multi-strain probiotic intervention (L. paracasei CNCM I-1518, L. paracasei CNCM I-3689, L. rhamnosus CNCM I-3690, and four yogurt strains) in a randomized, double-blinded, controlled clinical trial. Using a strain-level analysis for detection and metagenomic determination of replication rate, ingested strains were detected and replicated transiently in fecal samples and in the gut during and following antibiotic administration. Consumption of the fermented milk product led to a significant, although modest, improvement in the recovery of microbiota composition. Stratification of participants into two groups based on the degree to which their microbiome recovered showed i) a higher fecal abundance of the probiotic L. paracasei and L. rhamnosus strains and ii) an elevated replication rate of one strain (L. paracasei CNCMI-1518) in the recovery group. Collectively, our findings show a small but measurable benefit of a fermented milk product on microbiome recovery after antibiotics, which was linked to the detection and replication of specific probiotic strains. Such functional insight can form the basis for the development of probiotic-based intervention aimed to protect gut microbiome from drug treatments.


Assuntos
Produtos Fermentados do Leite , Microbioma Gastrointestinal , Probióticos , Antibacterianos/uso terapêutico , Fezes , Humanos , Probióticos/farmacologia , Probióticos/uso terapêutico
9.
Trends Microbiol ; 30(10): 940-947, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35577716

RESUMO

Bifidobacteria are among the earliest and most abundant bacterial colonizers of the neonatal gut in many mammals, where they elicit purported host health benefits. While early life-associated dynamics and diversity, as well as the metabolic and beneficial activities, of Bifidobacterium species have been well studied, functional contributions of bifidobacteria to health and well-being of adults remain less explored. In this opinion piece, we discuss the current knowledge regarding the relevance of endogenous Bifidobacterium species associated with adulthood. We identify knowledge gaps and discuss opportunities for microbiota enrichment with rationally selected strains of Bifidobacterium more adapted to the adult host. We propose that current knowledge and future studies in this area will help us to better understand the ecological, metabolic, and functional roles played by Bifidobacterium in the gut ecosystem across various host ages.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Animais , Bactérias , Bifidobacterium , Humanos , Recém-Nascido , Mamíferos
10.
Nat Rev Gastroenterol Hepatol ; 19(10): 625-637, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641786

RESUMO

Ever since Akkermansia muciniphila was discovered and characterized two decades ago, numerous studies have shown that the lack or decreased abundance of this commensal bacterium was linked with multiple diseases (such as obesity, diabetes, liver steatosis, inflammation and response to cancer immunotherapies). Although primarily based on simple associations, there are nowadays an increasing number of studies moving from correlations to causality. The causal evidence derived from a variety of animal models performed in different laboratories and recently was also recapitulated in a human proof-of-concept trial. In this Review, we cover the history of the discovery of A. muciniphila and summarize the numerous findings and main mechanisms of action by which this intestinal symbiont improves health. A comparison of this microorganism with other next-generation beneficial microorganisms that are being developed is also made.


Assuntos
Akkermansia , Verrucomicrobia , Animais , Humanos , Intestinos/microbiologia , Obesidade/microbiologia , Verrucomicrobia/fisiologia
12.
BMC Microbiol ; 22(1): 39, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35114943

RESUMO

BACKGROUND: Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. RESULTS: According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17 ± 0.34; P = 2.72x10-10) and improved metabolic health characterised by reduced visceral fat (beta = -28.18 ± 11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41 ± 0.051; P = 6.14x10-12) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30 ± 0.052; P = 1.49x10-8) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LifeLines-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed than an increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation. CONCLUSIONS: Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species (i.e. S. thermophilus and B. lactis).


Assuntos
Bactérias/genética , Microbioma Gastrointestinal/genética , Metaboloma , Metagenoma , Probióticos/administração & dosagem , Iogurte/microbiologia , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Bactérias/isolamento & purificação , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Masculino , Metabolômica/métodos , Metagenômica/métodos , Microbiota/genética , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Inquéritos e Questionários , Reino Unido
13.
Am J Clin Nutr ; 115(2): 432-443, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34617562

RESUMO

BACKGROUND: Individual diet components and specific dietary regimens have been shown to impact the gut microbiome. OBJECTIVES: Here, we explored the contribution of long-term diet by searching for dietary patterns that would best associate with the gut microbiome in a population-based cohort. METHODS: Using a priori and a posteriori approaches, we constructed dietary patterns from an FFQ completed by 1800 adults in the American Gut Project. Dietary patterns were defined as groups of participants or combinations of food variables (factors) driven by criteria ranging from individual nutrients to overall diet. We associated these patterns with 16S ribosomal RNA-based gut microbiome data for a subset of 744 participants. RESULTS: Compared to individual features (e.g., fiber and protein), or to factors representing a reduced number of dietary features, 5 a posteriori dietary patterns based on food groups were best associated with gut microbiome beta diversity (P ≤ 0.0002). Two patterns followed Prudent-like diets-Plant-Based and Flexitarian-and exhibited the highest Healthy Eating Index 2010 (HEI-2010) scores. Two other patterns presented Western-like diets with a gradient in HEI-2010 scores. A fifth pattern consisted mostly of participants following an Exclusion diet (e.g., low carbohydrate). Notably, gut microbiome alpha diversity was significantly lower in the most Western pattern compared to the Flexitarian pattern (P ≤ 0.009), and the Exclusion diet pattern was associated with low relative abundance of Bifidobacterium (P ≤ 1.2 × 10-7), which was better explained by diet than health status. CONCLUSIONS: We demonstrated that global-diet a posteriori patterns were more associated with gut microbiome variations than individual dietary features among adults in the United States. These results confirm that evaluating diet as a whole is important when studying the gut microbiome. It will also facilitate the design of more personalized dietary strategies in general populations.


Assuntos
Dieta Saudável/estatística & dados numéricos , Dieta/métodos , Microbioma Gastrointestinal/genética , Fenômenos Fisiológicos da Nutrição , Adulto , Inquéritos sobre Dietas , Fezes/microbiologia , Feminino , Humanos , Masculino , RNA Ribossômico 16S/análise , Estados Unidos
14.
Nutrients ; 13(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34960094

RESUMO

Healthy, plant-based diets, rich in fermentable residues, may induce gas-related symptoms. The aim of this exploratory study was to assess the effects of a fermented milk product, containing probiotics, on the tolerance of a healthy diet in patients with disorders of gut-brain interactions (DGBI), complaining of excessive flatulence. In an open design, a 3-day healthy, mostly plant-based diet was administered to patients with DGBI (52 included, 43 completed) before and at the end of 28 days of consumption of a fermented milk product (FMP) containing Bifidobacterium animalis subsp. lactis CNCM I-2494 and lactic acid bacteria. As compared to a habitual diet, the flatulogenic diet increased the perception of digestive symptoms (flatulence score 7.1 ± 1.6 vs. 5.8 ± 1.9; p < 0.05) and the daily number of anal gas evacuations (22.4 ± 12.5 vs. 16.5 ± 10.2; p < 0.0001). FMP consumption reduced the flatulence sensation score (by -1.6 ± 2.2; p < 0.05) and the daily number of anal gas evacuations (by -5.3 ± 8.2; p < 0.0001). FMP consumption did not significantly alter the overall gut microbiota composition, but some changes in the microbiota correlated with the observed clinical improvement. The consumption of a product containing B. lactis CNCM I-2494 improved the tolerance of a healthy diet in patients with DGBI, and this effect may be mediated, in part, by the metabolic activity of the microbiota.


Assuntos
Bifidobacterium animalis , Produtos Fermentados do Leite/microbiologia , Dieta Saudável/efeitos adversos , Dieta Vegetariana/efeitos adversos , Flatulência/etiologia , Flatulência/prevenção & controle , Gases , Intestinos/fisiologia , Adulto , Idoso , Bifidobacterium animalis/fisiologia , Feminino , Flatulência/microbiologia , Microbioma Gastrointestinal , Humanos , Masculino , Pessoa de Meia-Idade
15.
Nutrients ; 13(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34579049

RESUMO

Helicobacter pylori (Hp) eradication therapy alters gut microbiota, provoking gastrointestinal (GI) symptoms that could be improved by probiotics. The study aim was to assess the effect in Hp patients of a Test fermented milk containing yogurt and Lacticaseibacillus (L. paracasei CNCM I-1518 and I-3689, L. rhamnosus CNCM I-3690) strains on antibiotic associated diarrhea (AAD) (primary aim), GI-symptoms, gut microbiota, and metabolites. A randomised, double-blind, controlled trial was performed on 136 adults under 14-day Hp treatment, receiving the Test or Control product for 28 days. AAD and GI-symptoms were reported and feces analysed for relative and quantitative gut microbiome composition, short chain fatty acids (SCFA), and calprotectin concentrations, and viability of ingested strains. No effect of Test product was observed on AAD or GI-symptoms. Hp treatment induced a significant alteration in bacterial and fungal composition, a decrease of bacterial count and alpha-diversity, an increase of Candida and calprotectin, and a decrease of SCFA concentrations. Following Hp treatment, in the Test as compared to Control group, intra-subject beta-diversity distance from baseline was lower (padj = 0.02), some Enterobacteriaceae, including Escherichia-Shigella (padj = 0.0082) and Klebsiella (padj = 0.013), were less abundant, and concentrations of major SCFA (p = 0.035) and valerate (p = 0.045) were higher. Viable Lacticaseibacillus strains were detected during product consumption in feces. Results suggest that, in patients under Hp treatment, the consumption of a multi-strain fermented milk can induce a modest but significant faster recovery of the microbiota composition (beta-diversity) and of SCFA production and limit the increase of potentially pathogenic bacteria.


Assuntos
Produtos Fermentados do Leite , Diarreia/terapia , Microbioma Gastrointestinal , Infecções por Helicobacter/microbiologia , Probióticos/administração & dosagem , Adulto , Idoso , Antibacterianos/efeitos adversos , Diarreia/induzido quimicamente , Diarreia/microbiologia , Método Duplo-Cego , Fezes/microbiologia , Feminino , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Iogurte
16.
Sci Rep ; 11(1): 5521, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750831

RESUMO

Although incompletely understood, microbiota-host interactions are assumed to be altered in irritable bowel syndrome (IBS). We, therefore, aimed to develop a novel analysis pipeline tailored for the integrative analysis of microbiota-host interactions and association to symptoms and prove its utility in a pilot cohort. A multilayer stepwise integrative analysis pipeline was developed to visualize complex variable associations. Application of the pipeline was demonstrated on a dataset of IBS patients and healthy controls (HC), using the R software package to analyze colonic host mRNA and mucosal microbiota (16S rRNA gene sequencing), as well as gastrointestinal (GI) and psychological symptoms. In total, 42 IBS patients (57% female, mean age 33.6 (range 18-58)) and 20 HC (60% female, mean age 26.8 (range 23-41)) were included. Only in IBS patients, mRNA expression of Toll-like receptor 4 and genes associated with barrier function (PAR2, OCLN, TJP1) intercorrelated closely, suggesting potential functional relationships. This host genes-based "permeability cluster" was associated to mucosa-adjacent Chlamydiae and Lentisphaerae, and furthermore associated to satiety as well as to anxiety, depression and fatigue. In both IBS patients and HC, chromogranins, secretogranins and TLRs clustered together. In IBS patients, this host genes-based "immune-enteroendocrine cluster" was associated to specific members of Firmicutes, and to depression and fatigue, whereas in HC no significant association to microbiota was identified. We have developed a stepwise integrative analysis pipeline that allowed identification of unique host-microbiota intercorrelation patterns and association to symptoms in IBS patients. This analysis pipeline may aid in advancing the understanding of complex variable associations in health and disease.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Mucosa Intestinal , Síndrome do Intestino Irritável , Adolescente , Adulto , Bactérias/classificação , Bactérias/genética , Feminino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/microbiologia , Masculino , Pessoa de Meia-Idade , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
17.
Microbiome ; 9(1): 74, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771219

RESUMO

BACKGROUND: While several studies have documented associations between dietary habits and microbiota composition and function in healthy individuals, no study explored these associations in patients with irritable bowel syndrome (IBS), and especially with symptoms. METHODS: Here, we used a novel approach that combined data from a 4-day food diary, integrated into a food tree, together with gut microbiota (shotgun metagenomic) for individuals with IBS (N = 149) and healthy controls (N = 52). Paired microbiota and food-based trees allowed us to detect new associations between subspecies and diet. Combining co-inertia analysis and linear regression models, exhaled gas levels and symptom severity could be predicted from metagenomic and dietary data. RESULTS: We showed that individuals with severe IBS are characterized by a higher intake of poorer-quality food items during their main meals. Our analysis suggested that covariations between gut microbiota at subspecies level and diet could be explained with IBS symptom severity, exhaled gas, glycan metabolism, and meat/plant ratio. We provided evidence that IBS severity is associated with altered gut microbiota hydrogen function in correlation with microbiota enzymes involved in animal carbohydrate metabolism. CONCLUSIONS: Our study provides an unprecedented resolution of diet-microbiota-symptom interactions and ultimately guides new interventional studies that aim to identify gut microbiome-based nutritional recommendations for the management of gastrointestinal symptoms. TRIAL REGISTRATION: This trial was registered on the ClinicalTrials.gov, with the registration number NCT01252550 , on 3rd December 2010. Video abstract.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Microbiota , Animais , Dieta , Microbioma Gastrointestinal/genética , Humanos , Hidrogênio , Microbiota/genética
18.
Microorganisms ; 8(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027936

RESUMO

Interest in preventive or therapeutic strategies targeting gut microbiota is increasing. Such strategies may involve the direct replenishment of the gut microbiota with single strains or strain mixtures, or the manipulation of strain abundance through dietary intervention, including lactic acid bacteria. A few candidate species associated with health benefits have been identified, including Faecalibacterium prausnitzii. Given its growth requirements, modulation of this bacterium has not been extensively studied. In this investigation, we explored the capacity of cell-free supernatants of different Lactobacillus, Streptococcus, Lactococcus, and Bifidobacterium strains to stimulate the growth of F. prausnitzii A2-165. Modulation by four strains with the greatest capacity to stimulate growth or delay lysis, Lactococcus lactis subsp. lactis CNCM I-1631, Lactococcus lactis subsp. cremoris CNCM I-3558, Lactobacillus paracasei CNCM I-3689, and Streptococcus thermophilus CNCM I-3862, was further characterized by transcriptomics. The response of F. prausnitzii to cell-free supernatants from these four strains revealed several shared characteristics, in particular, upregulation of carbohydrate metabolism and cell wall-related genes and downregulation of replication and mobilome genes. Overall, this study suggests differential responses of F. prausnitzii to metabolites produced by different strains, providing protection against cell death, with an increase in peptidoglycan levels for cell wall formation, and reduced cell mobilome activity.

19.
Sci Rep ; 10(1): 15974, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994487

RESUMO

Many clinical studies have evaluated the effect of probiotics, but only a few have assessed their dose effects on gut microbiota and host. We conducted a randomized, double-blind, controlled intervention clinical trial to assess the safety (primary endpoint) of and gut microbiota response (secondary endpoint) to the daily ingestion for 4 weeks of two doses (1 or 3 bottles/day) of a fermented milk product (Test) in 96 healthy adults. The Test product is a multi-strain fermented milk product, combining yogurt strains and probiotic candidate strains Lactobacillus paracasei subsp. paracasei CNCM I-1518 and CNCM I-3689 and Lactobacillus rhamnosus CNCM I-3690. We assessed the safety of the Test product on the following parameters: adverse events, vital signs, hematological and metabolic profile, hepatic, kidney or thyroid function, inflammatory markers, bowel habits and digestive symptoms. We explored the longitudinal gut microbiota response to product consumption and dose, by 16S rRNA gene sequencing and functional contribution by shotgun metagenomics. Safety results did not show any significant difference between the Test and Control products whatever the parameters assessed, at the two doses ingested daily over a 4-week-period. Probiotic candidate strains were detected only during consumption period, and at a significantly higher level for the three strains in subjects who consumed 3 products bottles/day. The global structure of the gut microbiota as assessed by alpha and beta-diversity, was not altered by consumption of the product for four weeks. A zero-inflated beta regression model with random effects (ZIBR) identified a few bacterial genera with differential responses to test product consumption dose compared to control. Shotgun metagenomics analysis revealed a functional contribution to the gut microbiome of probiotic candidates.


Assuntos
Bactérias/classificação , Produtos Fermentados do Leite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Lactobacillus/fisiologia , Lacticaseibacillus rhamnosus/fisiologia , Masculino , Pessoa de Meia-Idade , Filogenia , Probióticos/farmacologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sinais Vitais/efeitos dos fármacos , Adulto Jovem
20.
mBio ; 11(4)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665271

RESUMO

We investigated the requirement of 15 human butyrate-producing gut bacterial strains for eight B vitamins and the proteinogenic amino acids by a combination of genome sequence analysis and in vitro growth experiments. The Ruminococcaceae species Faecalibacterium prausnitzii and Subdoligranulum variabile were auxotrophic for most of the vitamins and the amino acid tryptophan. Within the Lachnospiraceae, most species were prototrophic for all amino acids and several vitamins, but biotin auxotrophy was widespread. In addition, most of the strains belonging to Eubacterium rectale and Roseburia spp., but few of the other Lachnospiraceae strains, were auxotrophic for thiamine and folate. Synthetic coculture experiments of five thiamine or folate auxotrophic strains with different prototrophic bacteria in the absence and presence of different vitamin concentrations were carried out. This demonstrated that cross-feeding between bacteria does take place and revealed differences in cross-feeding efficiency between prototrophic strains. Vitamin-independent growth stimulation in coculture compared to monococulture was also observed, in particular for F. prausnitzii A2-165, suggesting that it benefits from the provision of other growth factors from community members. The presence of multiple vitamin auxotrophies in the most abundant butyrate-producing Firmicutes species found in the healthy human colon indicates that these bacteria depend upon vitamins supplied from the diet or via cross-feeding from other members of the microbial community.IMPORTANCE Microbes in the intestinal tract have a strong influence on human health. Their fermentation of dietary nondigestible carbohydrates leads to the formation of health-promoting short-chain fatty acids, including butyrate, which is the main fuel for the colonic wall and has anticarcinogenic and anti-inflammatory properties. A good understanding of the growth requirements of butyrate-producing bacteria is important for the development of efficient strategies to promote these microbes in the gut, especially in cases where their abundance is altered. The demonstration of the inability of several dominant butyrate producers to grow in the absence of certain vitamins confirms the results of previous in silico analyses. Furthermore, establishing that strains prototrophic for thiamine or folate (butyrate producers and non-butyrate producers) were able to stimulate growth and affect the composition of auxotrophic synthetic communities suggests that the provision of prototrophic bacteria that are efficient cross feeders may stimulate butyrate-producing bacteria under certain in vivo conditions.


Assuntos
Bactérias/genética , Butiratos/metabolismo , Fermentação , Microbiota , Vitaminas/biossíntese , Bactérias/metabolismo , Clostridiales/genética , Clostridiales/fisiologia , Colo/microbiologia , Faecalibacterium prausnitzii/genética , Faecalibacterium prausnitzii/fisiologia , Humanos , Ruminococcus/genética , Ruminococcus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA