RESUMO
When a colloidal suspension flows in a constriction, particles deposit and are able to clog it entirely, this fouling process being followed by the accumulation of particles. The knowledge of the dynamics of formation of such a dense particle assembly behind the clog head and its structural features is of primary importance in many industrial and environmental processes and especially during filtration. While most studies concentrate on the conditions under which pore clogging occurs, i.e., the pore narrowing up to its complete obstruction, this paper focuses on the accumulation of particles that follows pore obstruction. We determine the relative contribution of the confinement dimensions, the ionic strength and the flow conditions on the permeability and particle volume fraction of the resultant accumulation. In high confinement the irreversible deposition of particles on the channel surfaces controls the structure of the accumulation and the flow through it, irrespective of the other conditions, leading to a Darcy flow. Finally, we show that contrarily to the clog head, in which there is cohesion between particles, those in the subsequent accumulation are held together by the fluid and form a dense suspension of repulsive hard spheres.
RESUMO
Particles that flow through porous environments like soils, inside a filter or within our arteries, often lead to pore clogging. Even though tremendous efforts have been made in analysing this to circumvent this issue, the clog formation and its dynamics remain poorly understood. Coupling two experimental techniques, we elucidate the clogging mechanism at the particle scale of a slit pore with its height slightly larger than the particle diameter. We identify all the particle deposition modes during the clog formation and accurately predict the corresponding deposition rate. We show how the geometrical features of the pores and the competition between deposition modes can profoundly change the clog morphology. We find that the direct capture of particles by the pore wall is rather limited. The clog formation is more closely related to the short range hydrodynamic interaction between flowing particles and those which are already immobilized within the pore. Finally we demonstrate that all the clogging regimes can be gathered on a single phase diagram based on the flow conditions and the filter design.