Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Nematol ; 55(1): 20230034, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37622050

RESUMO

Strawberry (Fragaria × ananassa) is native to temperate regions. However, it has been produced in tropical areas, as a seasonal crop including in Florida, USA during the winter months. In March 2022, root galls resembling those induced by root-knot nematodes (Meloidogyne spp.) were observed in declining strawberry plants 'WinterstarTM FL 05-107' growing in an organic-certified research site in Hillsborough County, Florida, USA. To our knowledge, M. hapla is the only root-knot species reported to infect strawberry in Florida. Preliminary molecular analyses, including newly synthesized DNA sequences (TW81/AB28 = OQ469833 - OQ469836; D2A/D3B= OQ473043 - OQ473047) using extracted nematode females from the strawberry roots, initially identified the RKN as M. javanica. Nematode species confirmation was further performed using the morphology of the female perineal patterns and isozyme analysis, mainly esterase (EST) and malate dehydrogenase (MDH), DNA sequencing, (NAD5-F/NAD5-R) and the SCAR primer set (Fjav/Rjav), species-specific for M. javanica. Isozyme analyses, EST= J3, which is specific for M. javanica and MDH=N1, as well as the morphology of female perineal patterns, agreed with data previously reported for M. javanica. A pathogenicity test on strawberry 'WinterstarTM FL 05-107' transplants was performed using 10,000 eggs of the original M. javanica population, which induced galls on strawberry plants (Gall index, GI = 4.1) with egg masses clearly visible outside of the roots, producing an average of 1,344 eggs/gram of fresh root and 9,201 ± 4,206 eggs/root system. No galls or egg masses were observed on non-inoculated plants. Tomato 'HM 1823' was used as a control for the viability of the inoculum and showed numerous galls and egg masses (GI=5.0;). The newly obtained DNA sequences using NAD5-F/NAD5-R (OQ474970 - OQ474972) were compared with other sequences available in the GenBank and were shown to be 100% identical to five M. javanica populations from Polk County, Florida, USA (OM418745 - OM418749) and the complete mitochondrion genome of M. javanica (NC026556). To our knowledge, this is the first report of M. javanica infecting strawberry in the United States.

2.
Pest Manag Sci ; 79(11): 4474-4480, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37409379

RESUMO

BACKGROUND: The efficacy of drip-applied nematicides depends on adequate product distribution, which can be difficult in sandy soils. Three new non-fumigant nematicides (fluazaindolizine, fluensulfone, fluopyram), together with two old nematicides, oxamyl and metam potassium, were evaluated when applied via single and double drip tapes to control root-knot nematode in cucumber and squash in Florida between February 2020 and December 2022. RESULTS: Nematicide applications via double drip tapes resulted in lower root gall infection (and tend to have higher yield) as compared to a single tape for fluopyram, but no difference was noted between single and double tapes for oxamyl and fluazaindolizine. Fluensulfone response was somewhere in between and metam potassium had higher squash yield when applied with double tapes. Root-knot infection was higher in cucumber than in squash, and metam potassium had the highest yields and lowest nematode infection compared to other nematicide treatments. CONCLUSION: The benefit of double versus single drip tapes depended on the type of nematicide that was applied and was evident for nematicides that have poor water solubility like fluopyram. Some benefit was noted for metam potassium, but no or limited benefit was noted for oxamyl, fluazaindolizine and fluensulfone. © 2023 Society of Chemical Industry.

3.
J Nematol ; 55(1): 20230016, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37283998

RESUMO

In 2019-2022, declining symptoms were observed in two commercial strawberry farms in Hillsborough County, Florida. The fields in the two farms consisted of raised beds covered by plastic mulch. Both were fumigated with a mixture of 1,3-dichloropropene (40%) + chloropicrin (60%) before planting. Samples collected from large patches with declining plants were infested with stubby-root nematodes. No sting and root-knot nematode species were detected. The results of morphological and molecular analyses indicated that the stubby-root nematode populations were representative of the species Nanidorus minor. The two cultivars 'Florida Brilliance' and 'Florida Sensation' in the two fields included plants with stubby root symptoms showing a reduction in the size of the root system and arrested growth and elongation of the feeder roots on the first strawberry crop. The nematode population densities in the two fields increased at the end of strawberry season and averaged 66 and 96 specimens in 200 cm3 soil. In one of the fields, a second strawberry crop was established as in the previous year using the same practices (fumigation and raised beds covered with plastic). However, in this field the population of N. minor declined and did not reach damaging levels at the end of the season on the second strawberry crop. The factors causing the decline of the nematode population were not elucidated. This is the first report of a direct damaging effect of N. minor to strawberry.

4.
Annu Rev Phytopathol ; 61: 209-230, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186900

RESUMO

Plant-parasitic nematodes are one of the most insidious pests limiting agricultural production, parasitizing mostly belowground and occasionally aboveground plant parts. They are an important and underestimated component of the estimated 30% yield loss inflicted on crops globally by biotic constraints. Nematode damage is intensified by interactions with biotic and abiotic factors constraints: soilborne pathogens, soil fertility degradation, reduced soil biodiversity, climate variability, and policies influencing the development of improved management options. This review focuses on the following topics: (a) biotic and abiotic constraints, (b) modification of production systems, (c) agricultural policies, (d) the microbiome, (e) genetic solutions, and (f) remote sensing. Improving integrated nematode management (INM) across all scales of agricultural production and along the Global North-Global South divide, where inequalities influence access to technology, is discussed. The importance of the integration of technological development in INM is critical to improving food security and human well-being in the future.


Assuntos
Tecnologia , Tylenchida , Humanos , Animais , Agricultura , Políticas , Solo
5.
J Nematol ; 55(1): 20230012, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37143484

RESUMO

Globe artichoke (Cynara cardunculus var. scolymus L.) is a new alternative crop in Florida. This long-season crop poses a very high risk of root-knot nematode (RKN) damage, the most important nematode problem in vegetable production in Florida. This study aimed to examine the impact of RKN damage on artichoke production in the subtropical climate of Florida. Treatments consisted of four cultivars ('Green Globe Improved', 'Green Queen', 'Imperial Star', and 'Opal') planted on three different dates (October 5, October 19, and November 2) in Experiment 1, and three cultivars ('Green Globe Improved', 'Green Queen', and 'Imperial Star') grown with or without vernalization using gibberellic acid (GA3) in Experiment 2. Both field experiments were conducted on sandy soil in west-central Florida during the 2020-2021 and 2021-2022 growing seasons. We collected RKN population density and gall index (GI) data to assess RKN damage. In Experiment 1, all tested cultivars showed moderate to high RKN infection in the 2021-2022 season, with 43% to 75% of roots galled. There was no effect of planting dates on RKN damage in the 2020-2021 season. However, delaying the planting date from October 5 to November 2 reduced the RKN damage while increasing the RKN population densities in the 2021-2022 season. In Experiment 2, all tested cultivars showed high RKN infestation, with more than 80% of roots galled. Vernalization by GA3 did not affect the severity of RKN damage. Our results suggest that all tested artichoke cultivars are highly susceptible to RKN in subtropical environments of Florida, raising an alarm on the risk of RKN damage to commercial artichoke production and increasing awareness about the need for RKN management.

6.
J Nematol ; 54(1): 20220018, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35975222

RESUMO

The Mi gene in tomato confers resistance to Meloidogyne javanica, M. incognita, and M. arenaria, the most common tropical root-knot nematode (RKN) species found in Florida. Fusarium wilt (Fol) is another major problem in Florida tomatoes which may interact with RKN and cause more plant damage. To study the interactions between RKN, Fusarium, and Mi in tomato, two greenhouse experiments were conducted. Both experiments used different isolines (with and without I-3 and Mi genes) of the tomato cultivar Tasti Lee®. In the first experiment, all four isolines were subjected to two levels of RKN (~10,000 eggs/pot and no eggs) and two levels of Fol (1000 cc soil with 1,000 cfu/g at planting and no Fol), both applied at planting. In the second experiment, the two isolines without I-3 were exposed to the same two levels of RKN as described above and three levels of Fol (50 ml Fol with 1×106 cfu/m at planting, at 10 DAT, and no Fol). Fol reduced root-knot infection and reproduction when both Fol and RKN were inoculated at planting but not when Fol was inoculated 10 days later. Plant damage from Fol was exacerbated in the presence of RKN, especially when both pathogens were present at planting. Isolines with I-3 grew better in Fol-inoculated soil but had no effect when Fol and RKN were both present. Isolines with Mi gene reduced RKN infection and reproduction but did not affect plant damage caused by Fol. In summary, while RKN reproduction was reduced in the presence of Fol, the overall plant damage was more severe when both pathogens were present.

7.
Sci Total Environ ; 852: 158285, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030874

RESUMO

Fumigants are commonly used to control soil-borne pathogens of high-value crops, but they may also impact non-target soil microorganisms. Increasing interest in the use of sustainable management practices to control plant- and root-parasitic nematodes has resulted in the formulation of non-fumigant nematicides (chemicals or bionematicides) which are considered environmentally friendly alternatives to fumigants. However, the impact of these new products compared to standard fumigants on soil-borne pathogens, plant production, and the diversity and composition of non-target microbial communities in all crops remains unclear. To begin to address this knowledge gap, we examined the effect of fumigants commonly used in Florida (United States) strawberry production and newly formulated non-fumigant nematicides on nematode and weed control, plant growth, crop yield, and bacterial and fungal community diversity and predicted functionality. We found the standard fumigants increased crop yields and reduced weed pressure more than non-fumigants. Both fumigants and non-fumigants were an efficient management strategy to control sting nematodes. Treatments also impacted the abundance of specific beneficial and antagonistic taxa. Both fumigants and non-fumigants reduced soil bacterial and fungal diversity, an effect that remained for six months, thus suggesting a potential residual impact of these products on soil microorganisms. However, only fumigants altered soil microbial community composition and reduced network complexity, inducing a decrease or even a loss of some predicted bacterial and fungal functions, particularly during the first weeks after fumigation. Nevertheless, soil collected at the end of the season showed significant levels of root-knot nematode suppression in a growth chamber experiment, irrespective of the previous treatment. By linking the effect of fumigants and non-fumigants on soil-borne pests, plant and production, and the soil microbiome, this study increases our knowledge regarding the environmental impact of these products.


Assuntos
Fragaria , Nematoides , Praguicidas , Animais , Solo , Microbiologia do Solo , Controle de Plantas Daninhas , Antinematódeos , Bactérias , Produtos Agrícolas
8.
J Nematol ; 54(1): 20220021, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35860513

RESUMO

Kratom (Mitragyna speciosa) belongs to the coffee family of Rubiaceae. The tree is native to Southeast Asia and primarily grown in Malaysia, Thailand, and Indonesia. Recently, it has been introduced and cultivated in other countries including the United States. The leaves and extracts of the leaves are used for medicinal and recreational purposes. In February 2022, kratom root and soil samples were submitted to the University of Florida Nematode Assay Laboratory for diagnosis by a commercial grower in Florida. Root galls were observed on the roots. On examination of soil and root samples, it is revealed that high numbers of root-knot nematodes (Meloidogyne sp.) are present. Molecular species identification was performed by a combination of the mitochondria haplotyping and species-specific primer techniques using TRNAH/MHR106 and MORF/MTHIS primer sets and Meloidogyne incognita-specific primers (MIF/MIR). The root-knot nematode infecting kratom is identified as M. incognita by molecular analysis. To our knowledge, this paper is the first report of M. incognita infecting kratom in the United States.

9.
J Nematol ; 54(1): 20220016, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35860515

RESUMO

Hot water treatment was evaluated for its efficacy in controlling Meloidogyne arenaria on caladium. Caladium tubers pre-infested with M. arenaria were immersed in hot water at 50°C for 0 min, 30 min, and 45 min before being planted into 16.5-cm pots filled with sterilized sandy soil. Two caladium cultivars Florida Sweetheart PP 8526 (SWT) and Postman Joyner (PJR), each with three tuber sizes [#3 (<1.5 inch), #1 (1.5-2.5 inch), and Jumbo (>2.5 inch)], were evaluated. Ninety days after the first shoot observation, the number of nematode eggs in roots and second-stage juveniles in soil were significantly reduced, but not eliminated, in both 30 min and 45 min treatments; the 45 min treatment had better results than the 30 min treatment. The efficacy of hot water treatment was affected by caladium cultivar, but not by tuber size. The treated PJR tubers had lower nematode numbers than those of the cultivar SWT. The difference in nematode number between the two caladium cultivars might be related to the morphological characteristics of caladium tubers, as the scale-like tissue on SWT tubers might provide refuge for root-knot nematodes from heat damage. Further research needs to be conducted on determining heat-tolerant thresholds for different Meloidogyne spp. and different caladium cultivars, which will help improve nematode management strategies for caladium growers.

10.
Pest Manag Sci ; 78(10): 4072-4082, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35674449

RESUMO

BACKGROUND: Double-cropping is a common practice in vegetable plasticulture whereby a second crop is planted on the same plastic bed as the first crop. Root-knot nematodes (Meloidogyne spp.) are one of the major soilborne constraints in double-cropped vegetables due to nematode population build-up on the first crop. We evaluated the effect of fumigant and non-fumigant nematicides applied on the first crop, on nematode infection and yield of the second crop in 10 field trials between 2017 and 2020. Fumigants were chloropicrin (Pic100), chloropicrin +1,3-D (PicClor60), and non-fumigant nematicides were oxamyl (Vydate), fluensulfone (Nimitz), fluopyram (Velum) and fluazaindolizine (Salibro). The first crop was tomato and double crops were cucumber, squash, zucchini, and cantaloupe. RESULTS: Fumigation with chloropicrin on the first crop increased root-knot nematode damage on the double-crop at the end of the season in seven trials, while the opposite was noted in one trial, and no difference was noted in two trials. Fumigation with chloropicrin+1,3-D resulted in root-knot nematode damage less than chloropicrin but more than non-fumigated plots. Cucurbit yield was greater in non-fumigated beds in four trials, and in chloropicrin-treated beds in two trials. Fluensulfone reduced root-knot nematode damage on the second crop in five out of 10 trials. CONCLUSION: Our results indicate that chloropicrin applied on the tomato crop may lead to increased root-knot nematode damage on the double crop. More research is needed to understand the processes behind this, but it is possibly related to a reduction in natural nematode soil suppressiveness due to the broad-spectrum fungicidal activity of chloropicrin. © 2022 Society of Chemical Industry.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Solanum lycopersicum , Tylenchoidea , Animais , Antinematódeos/farmacologia , Fumigação , Hidrocarbonetos Clorados/toxicidade , Praguicidas/farmacologia
11.
Plant Dis ; 106(7): 1929-1934, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34978865

RESUMO

Aphelenchoides besseyi and A. pseudogoodeyi are foliar nematodes associated with commercial strawberry production in Florida, United States. The reproductive and feeding habits of these two nematode species were assessed on Florida isolates of the fungi Botrytis cinerea, Colletotrichum gloeosporioides, Macrophomina phaseolina, and Neopestalotiopsis rosae, which are pathogenic to strawberry, and nonpathogenic isolates of Fusarium oxysporum and Monilinia fructicola grown on potato dextrose agar in Petri dishes. Each culture was inoculated with six specimens of mixed life stages of A. besseyi or A. pseudogoodeyi and incubated at 24°C under axenic and nonaxenic conditions 23 and 31 days after inoculation, respectively. A. besseyi reproduction rates were greater on strawberry-pathogenic isolates of B. cinerea, C. gloeosporioides, and N. rosae than on the nonpathogenic isolates of F. oxysporum and M. fructicola. In contrast, reproductive rates of A. pseudogoodeyi did not vary among fungi cultures. For both nematode species, M. phaseolina was a poor host because it did not produce mycelium on the media used. Our findings indicate that A. besseyi is more selective in its fungal-feeding preference than A. pseudogoodeyi. Additionally, A. pseudogoodeyi eggs and juveniles were significantly more numerous than adults. Yet, for A. besseyi, adult stages were more abundant. Fungi aid in the maintenance of soil-dwelling populations of these two nematode species. Removing fungus-infected strawberry plant residues is both a desirable and effective management practice to limit A. besseyi in central Florida commercial strawberry fields.


Assuntos
Fragaria , Nematoides , Tylenchida , Animais , Florida , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Estados Unidos
12.
Plant Dis ; 106(1): 73-78, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34420363

RESUMO

Fresh-market tomatoes are produced on a raised-bed plasticulture system that relies heavily on soil-applied preplant fumigants for the management of soilborne pathogens, nematodes, and weeds. Since the transition from methyl bromide to alternative fumigants, growers have experienced a resurgence of several soilborne pests and pathogens, including root-knot nematode caused by Meloidogyne spp. and Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici race 3. This resurgence is attributed to the inability of the alternative fumigants to effectively disperse through the soil in the same manner as methyl bromide. Two supplemental fumigation strategies, the application of chloropicrin (PIC) below bed edges (herein "supplemental PIC") and broadcast deep-shank applications of 1,3-dichloropropene (1,3-D), were evaluated in conjunction with standard raised-bed applications of Pic-Clor 60, Pic-Clor 80, and Pic 100 covered with a virtually impermeable film or a totally impermeable film. Large-plot replicated studies were conducted in two separate commercial tomato fields with a history of production losses caused by root-knot nematode and Fusarium wilt. Deep-shank 1,3-D applications significantly reduced the recovery of root-knot and total parasitic nematodes across field sites before the preparation of raised beds. Both supplemental PIC and deep-shank 1,3-D reduced root-knot galling and Fusarium wilt incidence, but the latter supplemental treatment statistically had the greatest impact. Fumigant applied within raised beds or plastic film had no significant effect on root-knot galling or Fusarium wilt. Although both supplemental fumigation strategies had a significant effect on pest and disease pressure, neither statistically improved tomato yields based on small subplot harvests. Controlled laboratory experiments confirmed the fungicidal activity of 1,3-D against F. oxysporum f. sp. lycopersici, with 75, 90, 95, and 99% lethal doses corresponding to estimated field application rates of 56.1, 93.5, 121.6, and 184.7 liters/ha, respectively. The results demonstrate how fumigant placement can improve pest and disease control activity with current fumigant alternatives to methyl bromide and further support the broader pesticidal activity of some chemical fumigants.


Assuntos
Fusarium , Solanum lycopersicum , Tylenchoidea , Animais , Florida , Areia
13.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34790900

RESUMO

Nicotinamide adenine dinucleotide (NAD) has been shown to induce plant defense responses to different plant pathogens, including reducing northern root-knot nematode, Meloidogyne hapla, penetration and increasing plant mass in tomato. We wanted to further evaluate NAD that are effective against the more economically important species, M. incognita and whether NAD treatments of tomato seedlings in transplant trays can protect plants in the field. Different NAD concentrations (1 mM, 0.1 mM and 0.01 mM) and three application timings (pre; post; pre and post inoculation) were evaluated in growth room and greenhouse trials. The highest tested NAD concentration (1 mM) suppressed second-stage juveniles (J2) infection for all three application methods. Root gall ratings at 30 days after inoculation (DAI) were also suppressed by 1 mM NAD compared to the other two concentrations, and egg mass number was significantly suppressed for all concentrations and application timings compared to the non-treated control. The rate of 1 mM NAD for all three application timings also improved plant growth at 30 DAI. Long-term effects of 1 mM NAD (pre, pre + post, or post applications) on nematode infection, growth and yield of tomato were evaluated in two additional experiments. All NAD applications suppressed root galls after 60 days, but only the pre + post 1 mM NAD application suppressed gall severity at 105 days, as well as suppressed egg counts by 50% at 60 DAT. No significant difference in plant biomass and fruit yield after 105 days was observed among the treatments. Two field trials were conducted in spring and fall 2020 using tomato seedlings (cv. HM 1823) treated with two different NAD concentrations (1 mM and 5 mM in spring; 5 mM and 10 mM in fall) and transplanting seedlings in fumigated (chloropicrin ± 1,3-dichloropropene) and non-fumigated plastic-mulch beds. No significant impact of NAD in terms of reducing RKN severity or overall tomato growth and production was seen in fumigated beds, but in non-fumigated beds 5 mM NAD slightly increased early fruit yield in spring, and 10 mM NAD reduced root-knot soil populations in fall.

14.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-33860253

RESUMO

Soil fumigation remains the standard practice to manage soilborne pathogens such as plant-parasitic nematodes, bacteria, and fungi, especially in high-value crops. However, increasing regulatory pressure due to the inherent and broad-spectrum toxicity and negative environmental impact of chemical soil fumigants, its negative effect on overall soil health, and increasing demand for organic produce, has created a growing interest in biological fumigants. Many plants and microorganisms emit volatile compounds, which can potentially be used as bio-fumigants. In this mini-review, we summarize the current status of nematology studies focused on the development of volatile compounds emitted from plants and microorganisms as fumigants to control plant-parasitic nematodes. The gap of knowledge and challenges of studying volatile compounds are also addressed.

15.
Plant Dis ; 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926199

RESUMO

Thai basil (Ocimum basilicum var. thyrsiflora) is an important ethnic aromatic herb native to Southeast Asia. According to the Vegetable Production Handbook of Florida 2020-2021, Asian vegetables are currently grown on more than 4,000 ha in Florida, and Thai basil is one of the most commonly grown among these. Meloidogyne spp. cause severe damage to different basil cultivars (Brito et al. 2007). During May-July 2020, plant stunting and galled root symptoms were observed on Thai basil plants sampled from a commercial Asian vegetable farm in Wimauma, Florida (27°44.951' N; 82°16.271' E); 1,972 root-knot nematode second-stage juveniles (J2s) were extracted from 200 cm3 soil. A pathogenicity test was performed in September 2020 at the University of Florida Gulf Coast Research and Education Center, Wimauma, Florida. Ten of 20, three-week-old nematode-free Thai basil plants were inoculated with 5,000 eggs of field nematode cultures. Two months after inoculation (temperature = 22.8 ± 3.8 °C, relative humidity = 85.6 ± 14.0 %), average gall index (Bridge and Page 1980) = 5.4 ± 1.1 were only observed in inoculated plants, and 69,276 ± 18,904 eggs were extracted from roots using the NaClO method (Hussey and Barker 1973); 5 ± 7 J2s / 200 cc soil were recovered by the modified Baermann funnel technique (Forge and Kimpinski 2007). Nematode reproduction factor (RF) = 13.86 ± 3.78 (Nicol et al. 2010). Morphological measurements (mean, standard deviation and range) of J2s (n=20) included body length = 394.0 ± 22.3 (362.8 - 437.9) µm, body width = 15.7 ± 1.2 (13.6 - 18.3) µm, and stylet length = 12.8 ± 1.1 (10.4-14.5) µm. The perineal pattern of matured female (n=5) was oval-shaped with coarse and smooth striate; the dorsal arch was high and round; no lateral line presented. Morphological characteristics of females and J2s were consistent with those described for M. enterolobii (Yang and Eisenback 1983). DNA was extracted from a single female picked from infected Thai basil root using NaOH digestion method (Hübschen et al. 2004). The D2-D3 expansion segment of 28S rDNA and the COXII region on mitochondrial DNA were amplified by PCR using the primers 28S391a/28S501 and C2F3/1108 (Ye et al. 2020); the species was also confirmed with species-specific primers Me-F/Me-R (Ye et al. 2020). PCR products were sequenced by the Genomic Sciences Laboratory (North Carolina State University, Raleigh, NC, USA) and the results were recorded in the NCBI with GeneBank Accession Nos. MW488150 and MW507374. The sequences showed 100% identity with M. enterolobii in D2/D3 (KP901079, KP411230) and COXII (MN809527, KX214350). M. enterolobii (M. mayaguensis) has been reported on sweet basil in Florida (Brito et al. 2008). To our knowledge, this is the first detection of M. enterolobii on Thai basil in Hillsborough County, Florida. It is not clear to what extent M. enterolobii reduces the yield of Thai basil, but the RF value obtained in the pathogenicity test indicates the crop is certainly a very good host. Limited information is available on the distribution of M. enterolobii in Florida and the US. M. enterolobii is known to break down the root-knot resistance of crops including soybean, sweet potatoes, and tomatoes (Philbrick et al. 2020). This nematode is considered one of the major emerging threats to agriculture in the southeastern US. A multistate research and outreach program (FINDMe program) was initiated in 2019 to study the distribution and management of this nematode in the southeastern US.

16.
Pest Manag Sci ; 77(7): 3179-3186, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683000

RESUMO

BACKGROUND: Biotic and abiotic factors such as microbes and soil temperature can affect nematicide efficacy. Two experiments were conducted to test the effect of three soil temperatures on the efficacy of nonfumigant nematicides (fluopyram, fluensulfone, oxamyl and fluazaindolizine) against Meloidogyne javanica in pasteurized and natural soil in planta. RESULTS: The results showed that all tested nematicides were more efficacious in pasteurized than in natural soil. Temperature affected the nematicides differently with no effect of soil temperature on oxamyl and fluazaindolizine, whereas fluopyram and fluensulfone had greater efficacy at higher soil temperatures. CONCLUSION: Temperature effects were noted for some but not all nonfumigant nematicides. Fluopyram and fluensulfone were less effective when applied in cold soil, whereas oxamyl and fluazaindolizine were not affected by soil temperature. Although all nematicides resulted in almost complete control of M. javanica in pasteurized soil, this was not the case in natural soil, and much more root damage and nematode reproduction was noted in the latter. © 2021 Society of Chemical Industry.


Assuntos
Tylenchoidea , Animais , Antinematódeos , Solo , Temperatura
17.
Plant Dis ; 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33534605

RESUMO

Hemp is an annual herbaceous plant that is used for its fiber and oil in a variety of commercial and industrial products. In Florida, it is currently being explored as a new specialty crop. During a field trial from October to January 2019 in Wimauma, FL, a stem canker was observed on up to 60% of three-month-old plants of 'Eletta Campana', 'Carmagnola Selezionata', and 'Tygra'. Symptoms started on the main stems with light-to-dark brown lesions of different sizes and shapes. Over time, the lesions coalesced into large necrotic areas and bore pycnidia. Isolations were made from diseased stem tissues on General Isolation medium (Amiri et al. 2018) after surface disinfestation (Marin et al. 2020). The plates were placed in a growth chamber at 25°C under a 12/12 photoperiod. A fungus with white, floccose, aerial mycelium and pycnidia producing alpha and beta conidia was consistently isolated. Three single spore isolates were chosen for identification and pathogenicity tests. Pycnidia on PDA were globose to irregular and ranged from 170 to 250 µm long (210 ± 2.5, n = 50) and 140 to 220 µm wide (180 ± 2.7, n = 50). The alpha conidia were unicellular, hyaline, ellipsoidal to fusiform and ranged from 5.3 to 7.7 µm long (6.5 ± 1.6, n = 50) and 1.5 to 4.6 µm wide (2.8 ± 1.8, n = 50). The beta conidia were hyaline, elongated, filiform, straight or curved and ranged from 10.2 to 17.7 µm long (16.1 ± 2.2, n = 50) and 0.5 to 1.8 µm wide (0.8 ± 0.2, n = 50). Perithecia were not observed. Based on morphological features, the fungus was similar to anamorphs of Diaporthe spp. (Santos et al. 2011; Udayanga et al. 2015). DNA from the same three isolates was extracted using the FastDNA kit, and the ribosomal internal transcribed spacer (ITS), ß-tubulin (TUB), and calmodulin (CAL) regions were amplified following Udayanga et al. (2014), and Sanger sequenced by Genewiz. Sequences were deposited in GenBank (accession no. MT497039 to MT497047 for ITS, TUB, and CAL). BLASTn searches revealed isolates 20-58, 20-59, and 20-60 were 96.34% identical to the epitype isolate D. phaseolorum AR4203 for ITS (KJ590738.1, 527 bp out of 547 bp), 100% for TUB (KJ610893.1, 459 bp out of 459 bp), and 100% for CAL (KJ612135.1, 522 bp out of 522 bp) (Udayanga et al. 2015). Their identity was confirmed by phylogenetic analyses using maximum likelihood and Bayesian inference methods. To complete Koch's postulates, pycnidia of the same three isolates were harvested and crushed in 2 mL Eppendorf tubes containing 0.01% Tween 20. Conidia suspensions were adjusted to 106 spores/mL. Three 5-week-old potted plants of 'Eletta Campana' and 'Carmagnola Selezionata' per isolate were inoculated using a 1 mL syringe with a needle by injecting 200 µL of the suspension into the stem. Plants were placed inside clear plastic bags for 48 h and maintained in the greenhouse. Control plants were injected with sterile deionized water and kept under the same conditions. The pathogenicity test was repeated once. Four weeks after inoculation, inoculated plants developed stem cankers from which the same pathogen was isolated, whereas controls remained healthy. To our knowledge, this is the first report of D. phaseolorum causing stem canker on hemp. This pathogen has been reported causing canker on sunflower and Phaseolus spp. (Gomzhina and Gannibal 2018; Udayanga et al. 2015; Vrandecic et al. 2009). This discovery may help shape future research into disease epidemiology and management for a crop in which very limited disease information is available at the moment.

18.
J Nematol ; 52: 1-6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32692022

RESUMO

The ability of Meloidogyne enterolobii to reproduce on selected sweetpotato (Ipomoea batatas) cultivars (Beauregard, Covington, Evangeline, Hernandez, and Orleans (LA 05-111)) was evaluated in two greenhouse experiments, each with 10 replicates. All cultivars, except Beauregard (control) and Orleans, were reported previously as moderately resistant or resistant to M. incognita, Fusarium oxysporum f. sp. batatas, and Streptomyces ipomoeae. Plants were inoculated with M. enterolobii (5,000 eggs/plant) and arranged in a completely randomized design in a greenhouse with an average daily temperature of 24.8°C. Galls and egg masses per root system (0-5 scale), eggs per egg mass, eggs per gram of fresh root (gfr), and reproduction factor (RF) were determined. Meloidogyne enterolobii infected and reproduced on all the sweetpotato cultivars. The nematode induced galls on both fibrous and storage roots, regardless of the cultivar, as well as induced necrosis and cracks on storage roots. The lesions and cracks on the storage roots were more visually pronounced on Hernandez than those on other cultivars. Cultivar Orleans sustained less root galling and egg masses than other cultivars (p ≤ 0.01), and both Orleans and Beauregard cultivars had less eggs per gfr and a lower RF than Covington (5,683 eggs/gfr; RF = 16.92), Evangeline (7,161 eggs/gfr; RF = 30.01), and Hernandez (6,979 eggs/gfr; RF = 22.6). The latter two cultivars sustained the largest amount of reproduction of M. enterolobii. The number of eggs per egg mass ranged from 462 to 503 and was similar among all cultivars. In summary, M. enterolobii reproduced well on all sweetpotato cultivars; however, differences were observed among cultivars (p ≤ 0.001). The host status as previously reported for other root-knot nematode species was not a good predictor of host status to M. enterolobii. Some sweetpotato cultivars that were reported as resistant or moderately resistant to M. incognita race 3, such as Evangeline and Hernandez, were among the best hosts to M. enterolobii. Root growth of Evangeline and Orleans, but not of the other cultivars, was negatively correlated with nematode eggs per gfr.The ability of Meloidogyne enterolobii to reproduce on selected sweetpotato (Ipomoea batatas) cultivars (Beauregard, Covington, Evangeline, Hernandez, and Orleans (LA 05-111)) was evaluated in two greenhouse experiments, each with 10 replicates. All cultivars, except Beauregard (control) and Orleans, were reported previously as moderately resistant or resistant to M. incognita, Fusarium oxysporum f. sp. batatas, and Streptomyces ipomoeae. Plants were inoculated with M. enterolobii (5,000 eggs/plant) and arranged in a completely randomized design in a greenhouse with an average daily temperature of 24.8°C. Galls and egg masses per root system (0-5 scale), eggs per egg mass, eggs per gram of fresh root (gfr), and reproduction factor (RF) were determined. Meloidogyne enterolobii infected and reproduced on all the sweetpotato cultivars. The nematode induced galls on both fibrous and storage roots, regardless of the cultivar, as well as induced necrosis and cracks on storage roots. The lesions and cracks on the storage roots were more visually pronounced on Hernandez than those on other cultivars. Cultivar Orleans sustained less root galling and egg masses than other cultivars (p ≤ 0.01), and both Orleans and Beauregard cultivars had less eggs per gfr and a lower RF than Covington (5,683 eggs/gfr; RF = 16.92), Evangeline (7,161 eggs/gfr; RF = 30.01), and Hernandez (6,979 eggs/gfr; RF = 22.6). The latter two cultivars sustained the largest amount of reproduction of M. enterolobii. The number of eggs per egg mass ranged from 462 to 503 and was similar among all cultivars. In summary, M. enterolobii reproduced well on all sweetpotato cultivars; however, differences were observed among cultivars (p ≤ 0.001). The host status as previously reported for other root-knot nematode species was not a good predictor of host status to M. enterolobii. Some sweetpotato cultivars that were reported as resistant or moderately resistant to M. incognita race 3, such as Evangeline and Hernandez, were among the best hosts to M. enterolobii. Root growth of Evangeline and Orleans, but not of the other cultivars, was negatively correlated with nematode eggs per gfr.

19.
J Nematol ; 52: 1-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32323932

RESUMO

In early 2016, hop plants were introduced into Florida. By late 2016, the hop plants were showing stunted growth and were heavily parasitized by Meloidogyne javanica. In this study, we determined host susceptibility of 14 hop cultivars to M. javanica in a greenhouse experiment and monitored population development of plant-parasitic nematode species in the root zone of 17 hop cultivars planted in three newly established hop yards in Florida. Plant-parasitic nematodes in the rooting zone soil of field grown hop plants included M. javanica, Pratylenchus brachyurus, Paratrichodorus minor, Belonolaimus longicaudatus, Xiphinema setariae/vulgare complex, Mesocriconema xenoplax, and Helicotylenchus dihystera; however, soil population densities of P. minor, B. longicaudatus, X. setariae/vulgare complex, M. xenoplax, and H. dihystera remained low through the study. Root galling, M. javanica egg production, and soil population densities of M. javanica were consistently large on the 'Canadian Red Vine', 'Centennial', 'Chinook', and 'Comet' cultivars, and small on the 'Galena' and 'Triple Perle' cultivars. No differences were observed in soil population densities of P. brachyurus among hop cultivars. Overall, our study provides the first report of plant-parasitic nematode population development in the root zone on hop cultivars planted in Florida.In early 2016, hop plants were introduced into Florida. By late 2016, the hop plants were showing stunted growth and were heavily parasitized by Meloidogyne javanica. In this study, we determined host susceptibility of 14 hop cultivars to M. javanica in a greenhouse experiment and monitored population development of plant-parasitic nematode species in the root zone of 17 hop cultivars planted in three newly established hop yards in Florida. Plant-parasitic nematodes in the rooting zone soil of field grown hop plants included M. javanica, Pratylenchus brachyurus, Paratrichodorus minor, Belonolaimus longicaudatus, Xiphinema setariae/vulgare complex, Mesocriconema xenoplax, and Helicotylenchus dihystera; however, soil population densities of P. minor, B. longicaudatus, X. setariae/vulgare complex, M. xenoplax, and H. dihystera remained low through the study. Root galling, M. javanica egg production, and soil population densities of M. javanica were consistently large on the 'Canadian Red Vine', 'Centennial', 'Chinook', and 'Comet' cultivars, and small on the 'Galena' and 'Triple Perle' cultivars. No differences were observed in soil population densities of P. brachyurus among hop cultivars. Overall, our study provides the first report of plant-parasitic nematode population development in the root zone on hop cultivars planted in Florida.

20.
J Nematol ; 522020.
Artigo em Inglês | MEDLINE | ID: mdl-33829179

RESUMO

The last decade has seen a sharp increase in nematicide research in the agricultural industry. As a result, several new synthetic nematicides have become available to growers, and several more are expected in the near future. This new interest in nematicides is directly related to the growing demand for safer and more selective products, and the increasing regulatory pressure on many of the traditional nematicides. This has led to a ban of several widely used fumigant (e.g. methyl bromide) and non-fumigant (e.g. aldicarb) nematicides. The loss of traditional nematicides, combined with a lack of replacement products and awareness of the damage that nematodes can cause, has not only raised concern among growers, but has also created new opportunities for the crop protection industry. Nematicides have become a priority, and many companies are now allocating significant research dollars to discover new nematicides. The new nematicides are very different from previous products: (i) they are more selective, often only targeting nematodes, and (ii) they are less toxic, and safer to use. This review article describes these new developments by discussing the challenges that are associated with finding new nematicides, reviewing the nature, characteristics, and efficacy of new nematicides, and discussing the impact they could have on future nematode management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA