Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO Mol Med ; 16(4): 1004-1026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472366

RESUMO

Viral neuroinfections represent a major health burden for which the development of antivirals is needed. Antiviral compounds that target the consequences of a brain infection (symptomatic treatment) rather than the cause (direct-acting antivirals) constitute a promising mitigation strategy that requires to be investigated in relevant models. However, physiological surrogates mimicking an adult human cortex are lacking, limiting our understanding of the mechanisms associated with viro-induced neurological disorders. Here, we optimized the Organotypic culture of Post-mortem Adult human cortical Brain explants (OPAB) as a preclinical platform for Artificial Intelligence (AI)-driven antiviral studies. OPAB shows robust viability over weeks, well-preserved 3D cytoarchitecture, viral permissiveness, and spontaneous local field potential (LFP). Using LFP as a surrogate for neurohealth, we developed a machine learning framework to predict with high confidence the infection status of OPAB. As a proof-of-concept, we showed that antiviral-treated OPAB could partially restore LFP-based electrical activity of infected OPAB in a donor-dependent manner. Together, we propose OPAB as a physiologically relevant and versatile model to study neuroinfections and beyond, providing a platform for preclinical drug discovery.


Assuntos
Antivirais , Hepatite C Crônica , Humanos , Antivirais/farmacologia , Inteligência Artificial , Sistemas Microfisiológicos , Encéfalo
2.
Biomolecules ; 12(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35883457

RESUMO

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Assuntos
Caenorhabditis elegans , Neoplasias , Animais , Apoptose , Morte Celular , Humanos , Necrose
3.
Cell Death Differ ; 29(11): 2107-2122, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35449213

RESUMO

NFATc3 is the predominant member of the NFAT family of transcription factors in neurons, where it plays a pro-apoptotic role. Mechanisms controlling NFAT protein stability are poorly understood. Here we identify Trim39 as an E3 ubiquitin-ligase of NFATc3. Indeed, Trim39 binds and ubiquitinates NFATc3 in vitro and in cells where it reduces NFATc3 protein level and transcriptional activity. In contrast, silencing of endogenous Trim39 decreases NFATc3 ubiquitination and increases its activity, thereby resulting in enhanced neuronal apoptosis. We also show that Trim17 inhibits Trim39-mediated ubiquitination of NFATc3 by reducing both the E3 ubiquitin-ligase activity of Trim39 and the NFATc3/Trim39 interaction. Moreover, we identify Trim39 as a new SUMO-targeted E3 ubiquitin-ligase (STUbL). Indeed, mutation of SUMOylation sites in NFATc3 or SUMO-interacting motifs in Trim39 reduces NFATc3/Trim39 interaction and Trim39-induced ubiquitination of NFATc3. In addition, Trim39 preferentially ubiquitinates SUMOylated forms of NFATc3 in vitro. As a consequence, a SUMOylation-deficient mutant of NFATc3 exhibits increased stability and pro-apoptotic activity in neurons. Taken together, these data indicate that Trim39 modulates neuronal apoptosis by acting as a STUbL for NFATc3.


Assuntos
Fatores de Transcrição NFATC , Ubiquitina-Proteína Ligases , Apoptose , Fatores de Transcrição NFATC/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo , Proteína SUMO-1/metabolismo
4.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053366

RESUMO

The field of the Tripartite Motif (TRIM) family has progressively attracted increasing interest during the last two decades [...].


Assuntos
Doença , Saúde , Ubiquitina-Proteína Ligases/metabolismo , Animais , Autofagia , Humanos , Mutação/genética , Neoplasias/patologia , Medicina Regenerativa , Ubiquitina-Proteína Ligases/genética
5.
Cells ; 10(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069831

RESUMO

TRIM17 is a member of the TRIM family, a large class of RING-containing E3 ubiquitin-ligases. It is expressed at low levels in adult tissues, except in testis and in some brain regions. However, it can be highly induced in stress conditions which makes it a putative stress sensor required for the triggering of key cellular responses. As most TRIM members, TRIM17 can act as an E3 ubiquitin-ligase and promote the degradation by the proteasome of substrates such as the antiapoptotic protein MCL1. Intriguingly, TRIM17 can also prevent the ubiquitination of other proteins and stabilize them, by binding to other TRIM proteins and inhibiting their E3 ubiquitin-ligase activity. This duality of action confers several pivotal roles to TRIM17 in crucial cellular processes such as apoptosis, autophagy or cell division, but also in pathological conditions as diverse as Parkinson's disease or cancer. Here, in addition to recent data that endorse this duality, we review what is currently known from public databases and the literature about TRIM17 gene regulation and expression, TRIM17 protein structure and interactions, as well as its involvement in cell physiology and human disorders.


Assuntos
Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Animais , Morte Celular , Sobrevivência Celular , Estabilidade Enzimática , Humanos , Estabilidade Proteica , Proteólise , Transdução de Sinais , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Proteínas Ubiquitinadas/genética
6.
Cell Death Differ ; 26(5): 902-917, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30042493

RESUMO

BCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 has a short half-life due to its constitutive processing by the ubiquitin-proteasome system. This constitutes a major tumor-suppressor mechanism regulating BCL2A1 function. However, the enzymes involved in the regulation of BCL2A1 protein stability are currently unknown. Here, we provide the first insight into the regulation of BCL2A1 ubiquitination. We present evidence that TRIM28 is an E3 ubiquitin-ligase for BCL2A1. Indeed, endogenous TRIM28 and BCL2A1 bind to each other at the mitochondria and TRIM28 knock-down decreases BCL2A1 ubiquitination. We also show that TRIM17 stabilizes BCL2A1 by blocking TRIM28 from binding and ubiquitinating BCL2A1, and that GSK3 is involved in the phosphorylation-mediated inhibition of BCL2A1 degradation. BCL2A1 and its close relative MCL1 are thus regulated by common factors but with opposite outcome. Finally, overexpression of TRIM28 or knock-out of TRIM17 reduced BCLA1 protein levels and restored sensitivity of melanoma cells to BRAF-targeted therapy. Therefore, our data describe a molecular rheostat in which two proteins of the TRIM family antagonistically regulate BCL2A1 stability and modulate cell death.


Assuntos
Apoptose/genética , Antígenos de Histocompatibilidade Menor/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Morte Celular/genética , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação/genética , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica/genética , Estabilidade Proteica , Proteólise/efeitos dos fármacos , Ubiquitinação/genética
7.
Cell Rep ; 25(9): 2484-2496.e9, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485814

RESUMO

Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/química , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas Nucleares/química , Linhagem , Ligação Proteica , Proteólise , Transcrição Gênica , Proteínas com Motivo Tripartido , Ubiquitinação , alfa-Sinucleína/genética
8.
Metabolism ; 83: 177-187, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29466708

RESUMO

BACKGROUND: Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. OBJECTIVES: The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. RESULTS: We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/ß (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. CONCLUSION: GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle.


Assuntos
Proteínas de Transporte/fisiologia , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/fisiologia
10.
Cells ; 3(2): 418-37, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24814761

RESUMO

Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFß-TrCP, SCFFbw7 and Trim17) and one deubiquitinase (e.g., USP9X), that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

11.
Cell ; 143(4): 564-78, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21074048

RESUMO

Polyglutamylation is a posttranslational modification that generates glutamate side chains on tubulins and other proteins. Although this modification has been shown to be reversible, little is known about the enzymes catalyzing deglutamylation. Here we describe the enzymatic mechanism of protein deglutamylation by members of the cytosolic carboxypeptidase (CCP) family. Three enzymes (CCP1, CCP4, and CCP6) catalyze the shortening of polyglutamate chains and a fourth (CCP5) specifically removes the branching point glutamates. In addition, CCP1, CCP4, and CCP6 also remove gene-encoded glutamates from the carboxyl termini of proteins. Accordingly, we show that these enzymes convert detyrosinated tubulin into Δ2-tubulin and also modify other substrates, including myosin light chain kinase 1. We further analyze Purkinje cell degeneration (pcd) mice that lack functional CCP1 and show that microtubule hyperglutamylation is directly linked to neurodegeneration. Taken together, our results reveal that controlling the length of the polyglutamate side chains on tubulin is critical for neuronal survival.


Assuntos
Carboxipeptidases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Degeneração Neural/metabolismo , Ácido Poliglutâmico/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Sobrevivência Celular , Cerebelo/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Bulbo Olfatório/patologia , Alinhamento de Sequência , Tubulina (Proteína)/metabolismo
12.
Hepatology ; 50(5): 1370-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19711428

RESUMO

UNLABELLED: An unresolved question regarding the physiopathology of hepatitis C virus (HCV) infection is the remarkable efficiency with which host defenses are neutralized to establish chronic infection. Modulation of an apoptotic response is one strategy used by viruses to escape immune surveillance. We previously showed that HCV proteins down-regulate expression of BH3-only Bcl2 interacting domain (Bid) in hepatocytes of HCV transgenic mice. As a consequence, cells acquire resistance to Fas-mediated apoptosis, which in turn leads to increased persistence of experimental viral infections in vivo. This mechanism might participate in the establishment of chronic infections and the resulting pathologies, including hepatocellular carcinoma. We now report that Bid is also down-regulated in patients in the context of noncirrhotic HCV-linked tumorigenesis and in the HCV RNA replicon system. We show that the nonstructural HCV viral protein NS5A is sufficient to activate a calpain cysteine protease, leading to degradation of Bid. Moreover, pharmacological inhibitors of calpains restore both the physiological levels of Bid and the sensitivity of cells toward a death receptor-mediated apoptotic signal. Finally, human HCV-related tumors and hepatocytes from HCV transgenic mice that display low Bid expression contain activated calpains. CONCLUSION: Calpains activated by HCV proteins degrade Bid and thus dampen apoptotic signaling. These results suggest that inhibiting calpains could lead to an improved efficiency of immune-mediated elimination of HCV-infected cells.


Assuntos
Apoptose/fisiologia , Calpaína/metabolismo , Carcinoma Hepatocelular/patologia , Hepacivirus/metabolismo , Neoplasias Hepáticas/patologia , Transdução de Sinais/fisiologia , Proteínas Virais/metabolismo , Adulto , Idoso , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hepatite C Crônica/patologia , Hepatite C Crônica/fisiopatologia , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Replicon/fisiologia , Proteínas não Estruturais Virais/metabolismo
13.
J Biol Chem ; 280(7): 5693-702, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15542599

RESUMO

Neuronal apoptosis has been shown to require de novo RNA/protein synthesis. However, very few genes whose expression is necessary for inducing apoptosis have been identified so far. To systematically identify such genes, we have used genome-scale, long oligonucleotide microarrays and characterized the gene expression profile of cerebellar granule neurons in the early phase of apoptosis elicited by KCl deprivation. We identified 368 significantly differentially expressed genes, including most of the genes previously reported to be transcriptionally regulated in this paradigm. In addition, we identified several hundreds of genes whose transcriptional regulation has never been associated with neuronal apoptosis. We used automated Gene Ontology annotation, analysis of promoter sequences, and statistical tools to characterize these regulations. Although differentially expressed genes included some components of the apoptotic machinery, this functional category was not significantly over-represented among regulated genes. On the other hand, categories related to signal transduction were the most significantly over-represented group. This indicates that the apoptotic machinery is mainly constitutive, whereas molecular pathways that lead to the activation of apoptotic components are transcriptionally regulated. In particular, we show for the first time that signaling pathways known to be involved in the control of neuronal survival are regulated at the transcriptional level and not only by post-translational mechanisms. Moreover, our approach provides insights into novel transcription factors and novel mechanisms, such as the unfolded protein response and cell adhesion, that may contribute to the induction of neuronal apoptosis.


Assuntos
Apoptose/genética , Perfilação da Expressão Gênica , Neurônios/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genética , Animais , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Cloreto de Potássio/farmacologia , Regiões Promotoras Genéticas/genética , Dobramento de Proteína , RNA Mensageiro/análise , RNA Mensageiro/genética , Elementos de Resposta/genética , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
14.
Gastroenterology ; 126(3): 859-72, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14988840

RESUMO

BACKGROUND & AIMS: Multiple molecular mechanisms are likely to contribute to the establishment of persistent infection by hepatitis C virus (HCV). The aim of this work was to study the evasion of cell-mediated antiviral immune responses in transgenic mice with liver-targeted expression of the hepatitis C viral genome. These mice develop steatosis and hepatocellular carcinoma and constitute a murine model of chronic HCV infection. METHODS: Mice of the FL-N/35 lineage were infected with replication-deficient adenoviral vectors encoding beta-galactosidase, and the persistence of infected cells was measured by histochemistry and enzymatic assays. RESULTS: Hepatocytes from the HCV(+) transgenic mice are deficient in eliminating an adenoviral infection, despite an apparently normal T-cell response. The defect in adenoviral clearance was associated with resistance of transgenic hepatocytes to apoptosis induced by Fas/APO1/CD95 death receptor stimulation, a major pathway of cell killing by cytotoxic T lymphocytes. The attenuation of Fas-mediated apoptosis observed in the murine model was associated with a reduced abundance of Bid, a BH3-only member of the Bcl-2 family of apoptosis regulators. CONCLUSIONS: Our results suggest that viral evasion of cell-mediated immune responses leading to apoptotic death of hepatocytes may contribute to viral persistence. Such a mechanism might also contribute to the development of liver cancer in HCV.


Assuntos
Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/metabolismo , Hepacivirus/metabolismo , Hepatócitos/metabolismo , Poliproteínas/metabolismo , Proteínas Virais/metabolismo , Infecções por Adenoviridae/genética , Animais , Formação de Anticorpos , Apoptose , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Expressão Gênica , Hepatócitos/imunologia , Hepatócitos/virologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Poliproteínas/genética , Linfócitos T Citotóxicos/imunologia , Transgenes , Proteínas Virais/genética , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA