Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Syst Biol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745106

RESUMO

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.

2.
BMJ Open ; 14(3): e083558, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458803

RESUMO

INTRODUCTION: Despite international efforts, the number of individuals struggling with obesity is still increasing. An important aspect of obesity prevention relates to identifying individuals at risk at early stage, allowing for timely risk stratification and initiation of countermeasures. However, obesity is complex and multifactorial by nature, and one isolated (bio)marker is unlikely to enable an optimal risk stratification and prognosis for the individual; rather, a combined set is required. Such a multicomponent interpretation would integrate biomarkers from various domains, such as classical markers (eg, anthropometrics, blood lipids), multiomics (eg, genetics, proteomics, metabolomics), lifestyle and behavioural attributes (eg, diet, physical activity, sleep patterns), psychological traits (mental health status such as depression) and additional host factors (eg, gut microbiota diversity), also by means of advanced interpretation tools such as machine learning. In this paper, we will present a protocol that will be employed for a scoping review that attempts to summarise and map the state-of-the-art in the area of multicomponent (bio)markers related to obesity, focusing on the usability and effectiveness of such biomarkers. METHODS AND ANALYSIS: PubMed, Scopus, CINAHL and Embase databases will be searched using predefined key terms to identify peer-reviewed articles published in English until January 2024. Once downloaded into EndNote for deduplication, CADIMA will be employed to review and select abstracts and full-text articles in a two-step procedure, by two independent reviewers. Data extraction will then be carried out by several independent reviewers. Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews and Peer Review of Electronic Search Strategies guidelines will be followed. Combinations employing at least two biomarkers from different domains will be mapped and discussed. ETHICS AND DISSEMINATION: Ethical approval is not required; data will rely on published articles. Findings will be published open access in an international peer-reviewed journal. This review will allow guiding future directions for research and public health strategies on obesity prevention, paving the way towards multicomponent interventions.


Assuntos
Biomarcadores , Obesidade , Humanos , Antropometria , Bases de Dados Factuais , Obesidade/diagnóstico , Projetos de Pesquisa , Literatura de Revisão como Assunto
3.
mBio ; 15(4): e0007824, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470269

RESUMO

Inflammatory bowel disease (IBD) is a group of inflammatory conditions of the gastrointestinal tract. The etiology of IBD remains elusive, but the disease is suggested to arise from the interaction of environmental and genetic factors that trigger inadequate immune responses and inflammation in the intestine. The gut microbiome majorly contributes to disease as an environmental variable, and although some causative bacteria are identified, little is known about which specific members of the microbiome aid in the intestinal epithelial barrier function to protect from disease. While chemically inducing colitis in mice from two distinct animal facilities, we serendipitously found that mice in one facility showed remarkable resistance to disease development, which was associated with increased markers of epithelial barrier integrity. Importantly, we show that Akkermansia muciniphila and Parabacteroides distasonis were significantly increased in the microbiota of resistant mice. To causally connect these microbes to protection against disease, we colonized susceptible mice with the two bacterial species. Our results demonstrate that A. muciniphila and P. distasonis synergistically drive a protective effect in both acute and chronic models of colitis by boosting the frequency of type 3 innate lymphoid cells in the colon and by improving gut epithelial integrity. Altogether, our work reveals a combined effort of commensal microbes in offering protection against severe intestinal inflammation by shaping gut immunity and by enhancing intestinal epithelial barrier stability. Our study highlights the beneficial role of gut bacteria in dictating intestinal homeostasis, which is an important step toward employing microbiome-driven therapeutic approaches for IBD clinical management. IMPORTANCE: The contribution of the gut microbiome to the balance between homeostasis and inflammation is widely known. Nevertheless, the etiology of inflammatory bowel disease, which is known to be influenced by genetics, immune response, and environmental cues, remains unclear. Unlocking novel players involved in the dictation of a protective gut, namely, in the microbiota component, is therefore crucial to develop novel strategies to tackle IBD. Herein, we revealed a synergistic interaction between two commensal bacterial strains, Akkermansia muciniphila and Parabacteroides distasonis, which induce protection against both acute and chronic models of colitis induction, by enhancing epithelial barrier integrity and promoting group 3 innate lymphoid cells in the colonic mucosa. This study provides a novel insight on how commensal bacteria can beneficially act to promote intestinal homeostasis, which may open new avenues toward the use of microbiome-derived strategies to tackle IBD.


Assuntos
Bacteroidetes , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Imunidade Inata , Linfócitos , Colite/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Inflamação , Verrucomicrobia/genética , Akkermansia
4.
Cell Host Microbe ; 32(4): 527-542.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38513656

RESUMO

Inflammatory bowel diseases (IBDs) are chronic conditions characterized by periods of spontaneous intestinal inflammation and are increasing in industrialized populations. Combined with host genetics, diet and gut bacteria are thought to contribute prominently to IBDs, but mechanisms are still emerging. In mice lacking the IBD-associated cytokine, interleukin-10, we show that a fiber-deprived gut microbiota promotes the deterioration of colonic mucus, leading to lethal colitis. Inflammation starts with the expansion of natural killer cells and altered immunoglobulin-A coating of some bacteria. Lethal colitis is then driven by Th1 immune responses to increased activities of mucin-degrading bacteria that cause inflammation first in regions with thinner mucus. A fiber-free exclusive enteral nutrition diet also induces mucus erosion but inhibits inflammation by simultaneously increasing an anti-inflammatory bacterial metabolite, isobutyrate. Our findings underscore the importance of focusing on microbial functions-not taxa-contributing to IBDs and that some diet-mediated functions can oppose those that promote disease.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Microbiota , Camundongos , Animais , Doenças Inflamatórias Intestinais/microbiologia , Colite/microbiologia , Inflamação , Dieta , Predisposição Genética para Doença , Bactérias
5.
Nat Microbiol ; 8(10): 1863-1879, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37696941

RESUMO

Alterations in the gut microbiome, including diet-driven changes, are linked to the rising prevalence of food allergy. However, little is known about how specific gut bacteria trigger the breakdown of oral tolerance. Here we show that depriving specific-pathogen-free mice of dietary fibre leads to a gut microbiota signature with increases in the mucin-degrading bacterium Akkermansia muciniphila. This signature is associated with intestinal barrier dysfunction, increased expression of type 1 and 2 cytokines and IgE-coated commensals in the colon, which result in an exacerbated allergic reaction to food allergens, ovalbumin and peanut. To demonstrate the causal role of A. muciniphila, we employed a tractable synthetic human gut microbiota in gnotobiotic mice. The presence of A. muciniphila within the microbiota, combined with fibre deprivation, resulted in stronger anti-commensal IgE coating and innate type-2 immune responses, which worsened symptoms of food allergy. Our study provides important insights into how gut microbes can regulate immune pathways of food allergy in a diet-dependent manner.


Assuntos
Hipersensibilidade Alimentar , Verrucomicrobia , Humanos , Camundongos , Animais , Verrucomicrobia/metabolismo , Hipersensibilidade Alimentar/microbiologia , Akkermansia , Imunoglobulina E/metabolismo
6.
Sci Total Environ ; 900: 165722, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37482350

RESUMO

BACKGROUND: The mycotoxin deoxynivalenol (DON) is a frequent contaminant of grain and cereal products worldwide. Exposure to DON can cause gastrointestinal inflammation, disturb gut barrier function, and induce gut dysbiosis in vivo under basal conditions, but little is known about the effects of DON ingestion in individuals with pre-existing gastrointestinal disease. OBJECTIVES: Mice were orally exposed to 10 and 100 µg/kg bw/day of DON, corresponding to 10 to 100-fold human tolerable daily intake concentrations, and to the translation in mice of current human daily intake. The effects of DON exposure were explored under steady-state conditions, and in murine models of enteritis and colorectal cancer (CRC). RESULTS: After 8 days of DON exposure, an increase of histomorphological and molecular parameters of epithelial proliferation were observed in normal mice, from the duodenum to the colon. The same exposure in a murine model of indomethacin-induced enteritis led to exacerbation of lesion development and induction of ileal cytokines. DON exposure also worsened the development of colitis-associated CRC in mice as shown by increases in endoscopic and histological colitis scores, tumor grades, and histological hyperplasia. In colon of DON-exposed mice, upstream and downstream ERK signaling genes were upregulated including Mapk1, Mapk3, Map 2k1, Map2k2 core ERK pathway effectors, and Bcl2 and Bcl2l1 antiapoptotic genes. The effects observed in the CRC model were associated with alterations in cecal microbiota taxonomic composition and metabolism of bacterial fucose and rhamnose. Strong Spearman's correlations were revealed between the relative abundance of the changed bacterial genera and CRC-related variables. DISCUSSION: Ingestion of DON mycotoxin at concentrations representative of human real-world exposure worsened the development of indomethacin-induced enteritis and colitis-associated CRC in mice. Our results suggest that even at low doses, which are currently tolerated in the human diet, DON could promote the development of intestinal inflammatory diseases and CRC.


Assuntos
Colite , Neoplasias Colorretais , Enterite , Micotoxinas , Camundongos , Humanos , Animais , Enterite/induzido quimicamente , Enterite/patologia , Dieta , Indometacina/toxicidade , Neoplasias Colorretais/induzido quimicamente
7.
EMBO Mol Med ; 15(8): e17241, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37278126

RESUMO

In early life, the intestinal mucosa and immune system undergo a critical developmental process to contain the expanding gut microbiome while promoting tolerance toward commensals, yet the influence of maternal diet and microbial composition on offspring immune maturation remains poorly understood. We colonized germ-free mice with a consortium of 14 strains, fed them a standard fiber-rich chow or a fiber-free diet, and then longitudinally assessed offspring development during the weaning period. Unlike pups born to dams fed the fiber-rich diet, pups of fiber-deprived dams demonstrated delayed colonization with Akkermansia muciniphila, a mucin-foraging bacterium that can also use milk oligosaccharides. The pups of fiber-deprived dams exhibited an enrichment of colonic transcripts corresponding to defense response pathways and a peak in Il22 expression at weaning. Removal of A. muciniphila from the community, but maintenance on the fiber-rich diet, was associated with reduced proportions of RORγt-positive innate and adaptive immune cell subsets. Our results highlight the potent influence of maternal dietary fiber intake and discrete changes in microbial composition on the postnatal microbiome assemblage and early immune development.


Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Dieta , Mucosa Intestinal , Colo
8.
Res Sq ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993463

RESUMO

Inflammatory bowel disease (IBD) is a chronic condition characterized by periods of spontaneous intestinal inflammation and is increasing in industrialized populations. Combined with host genetic predisposition, diet and gut bacteria are thought to be prominent features contributing to IBD, but little is known about the precise mechanisms involved. Here, we show that low dietary fiber promotes bacterial erosion of protective colonic mucus, leading to lethal colitis in mice lacking the IBD-associated cytokine, interleukin-10. Diet-induced inflammation is driven by mucin-degrading bacteria-mediated Th1 immune responses and is preceded by expansion of natural killer T cells and reduced immunoglobulin A coating of some bacteria. Surprisingly, an exclusive enteral nutrition diet, also lacking dietary fiber, reduced disease by increasing bacterial production of isobutyrate, which is dependent on the presence of a specific bacterial species, Eubacterium rectale. Our results illuminate a mechanistic framework using gnotobiotic mice to unravel the complex web of diet, host and microbial factors that influence IBD.

9.
Nat Rev Immunol ; 23(1): 9-23, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35534624

RESUMO

The prevalence of autoimmune diseases (ADs) worldwide has rapidly increased over the past few decades. Thus, in addition to the classical risk factors for ADs, such as genetic polymorphisms, infections and smoking, environmental triggers have been considered. Recent sequencing-based approaches have revealed that patients with extra-intestinal ADs, such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes and systemic lupus erythematosus, have distinct gut microbiota compositions compared to healthy controls. Faecal microbiota transplantation or inoculation with specific microbes in animal models of ADs support the hypothesis that alterations of gut microbiota influence autoimmune responses and disease outcome. Here, we describe the compositional and functional changes in the gut microbiota in patients with extra-intestinal AD and discuss how the gut microbiota affects immunity. Moreover, we examine how the gut microbiota might be modulated in patients with ADs as a potential preventive or therapeutic approach.


Assuntos
Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Enteropatias , Lúpus Eritematoso Sistêmico , Animais , Humanos , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/terapia , Fatores de Risco , Disbiose
10.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168188

RESUMO

The erosion of the colonic mucus layer by a dietary fiber-deprived gut microbiota results in heightened susceptibility to an attaching and effacing pathogen, Citrobacter rodentium. Nevertheless, the questions of whether and how specific mucolytic bacteria aid in the increased pathogen susceptibility remain unexplored. Here, we leverage a functionally characterized, 14-member synthetic human microbiota in gnotobiotic mice to deduce which bacteria and functions are responsible for the pathogen susceptibility. Using strain dropouts of mucolytic bacteria from the community, we show that Akkermansia muciniphila renders the host more vulnerable to the mucosal pathogen during fiber deprivation. However, the presence of A. muciniphila reduces pathogen load on a fiber-sufficient diet, highlighting the context-dependent beneficial effects of this mucin specialist. The enhanced pathogen susceptibility is not owing to altered host immune or pathogen responses, but is driven by a combination of increased mucus penetrability and altered activities of A. muciniphila and other community members. Our study provides novel insights into the mechanisms of how discrete functional responses of the same mucolytic bacterium either resist or enhance enteric pathogen susceptibility.

11.
Front Immunol ; 13: 958952, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990627

RESUMO

The alpha-Gal epitope (α-Gal) with the determining element galactose-α1,3-galactose can lead to clinically relevant allergic reactions and rejections in xenotransplantation. These immune reactions can develop because humans are devoid of this carbohydrate due to evolutionary loss of the enzyme α1,3-galactosyltransferase (GGTA1). In addition, up to 1% of human IgG antibodies are directed against α-Gal, but the stimulus for the induction of anti-α-Gal antibodies is still unclear. Commensal bacteria have been suggested as a causal factor for this induction as α-Gal binding tools such as lectins were found to stain cultivated bacteria isolated from the intestinal tract. Currently available tools for the detection of the definite α-Gal epitope, however, are cross-reactive, or have limited affinity and, hence, offer restricted possibilities for application. In this study, we describe a novel monoclonal IgG1 antibody (27H8) specific for the α-Gal epitope. The 27H8 antibody was generated by immunization of Ggta1 knockout mice and displays a high affinity towards synthetic and naturally occurring α-Gal in various applications. Using this novel tool, we found that intestinal bacteria reported to be α-Gal positive cannot be stained with 27H8 questioning whether commensal bacteria express the native α-Gal epitope at all.


Assuntos
Galactose , Imunoglobulina G , Animais , Anticorpos Monoclonais , Bactérias , Epitopos , Humanos , Camundongos
12.
Cell Mol Immunol ; 19(6): 653-654, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35277673
13.
Trends Mol Med ; 28(1): 36-50, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34810087

RESUMO

The prevalence of food allergies has reached epidemic levels but the cause remains largely unknown. We discuss the clinical relevance of the gut mucosal barrier as a site for allergic sensitization to food. In this context, we focus on an important but overlooked part of the mucosal barrier in pathogenesis, the glycoprotein-rich mucus layer, and call attention to both beneficial and detrimental aspects of mucus-gut microbiome interactions. Studying the intricate links between the mucus barrier, the associated bacteria, and the mucosal immune system may advance our understanding of the mechanisms and inform prevention and treatment strategies in food allergy.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Bactérias , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/terapia , Humanos , Mucosa Intestinal/microbiologia , Muco/microbiologia
14.
mSystems ; 6(6): e0071721, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34726493

RESUMO

Food safety has considerably improved worldwide, yet infections with foodborne human enteric pathogens, such as Listeria spp. and Salmonella spp., still cause numerous hospitalizations and fatalities. Since dietary alterations, including fiber deficiency, might impact the colonization resistance mediated by the gut microbiome, studying the diet-microbiome-pathogen axis holds promise in further understanding the pathogenesis mechanisms. Using a gnotobiotic mouse model containing a 14-member synthetic human gut microbiota (14SM), we have previously shown that dietary fiber deprivation promotes proliferation of mucin-degrading bacteria, leading to a microbiome-mediated erosion of the colonic mucus barrier, which results in an increased susceptibility toward the rodent enteric pathogen Citrobacter rodentium. Here, we sought to understand how a low-fiber diet affects susceptibility to Listeria monocytogenes and Salmonella enterica serovar Typhimurium by using our 14SM gnotobiotic mouse model in BALB/c and C57BL/6 mouse backgrounds, respectively. Intriguingly, and in contrast to our results with C. rodentium, we observed that depriving mice of dietary fiber protected them from infections with both pathogens, compared to mice fed a standard chow. The microbiome delayed the overall pathogenicity compared to the onset of disease observed in germfree control mice. Nevertheless, we observed the same effect of diet on germfree mice, suggesting that the susceptibility is directly driven by the diet itself even in the absence of the gut microbiome. Our study points out an important observation, namely, that dietary fiber plays a crucial role in either the host's susceptibility, the virulence of these pathogens, or both. It would be judicious to design and interpret future studies on this basis. IMPORTANCE The human enteric pathogens Listeria monocytogenes and Salmonella Typhimurium are employed as classical models in rodent hosts to understand the pathogenesis mechanisms of foodborne pathogens. Research in the past decade has stressed the importance of the gut microbial composition in modulating susceptibility to these pathogens. The results of our study-using gnotobiotic mice and germfree control animals-additionally suggest that the dietary fiber components can dominate the impact of enteropathogenic virulence over the pathogenicity-modulating properties of the gut microbiome. The significance of our research is that there is a need to carefully choose a certain chow when performing the enteropathogen-associated mouse experiments and to cautiously match the rodent diets when trying to replicate experiments across different laboratories. Finally, our data underscore the importance of using germfree control animals to study these pathogens, as our findings would have been prone to misinterpretation in the absence of these controls.

15.
Gut Microbes ; 13(1): 1966263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34530674

RESUMO

The change of dietary habits in Western societies, including reduced consumption of fiber, is linked to alterations in gut microbial ecology. Nevertheless, mechanistic connections between diet-induced microbiota changes that affect colonization resistance and enteric pathogen susceptibility are still emerging. We sought to investigate how a diet devoid of soluble plant fibers impacts the structure and function of a conventional gut microbiota in specific-pathogen-free (SPF) mice and how such changes alter susceptibility to a rodent enteric pathogen. We show that absence of dietary fiber intake leads to shifts in the abundances of specific taxa, microbiome-mediated erosion of the colonic mucus barrier, a reduction of intestinal barrier-promoting short-chain fatty acids, and increases in markers of mucosal barrier integrity disruption. Importantly, our results highlight that these low-fiber diet-induced changes in the gut microbial ecology collectively contribute to a lethal colitis by the mucosal pathogen Citrobacter rodentium, which is used as a mouse model for enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Our study indicates that modern, low-fiber Western-style diets might make individuals more prone to infection by enteric pathogens via the disruption of mucosal barrier integrity by diet-driven changes in the gut microbiota, illustrating possible implications for EPEC and EHEC infections.


Assuntos
Citrobacter rodentium/crescimento & desenvolvimento , Colite/microbiologia , Dieta Ocidental/efeitos adversos , Fibras na Dieta/análise , Mucosa Intestinal/microbiologia , Junções Íntimas/fisiologia , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Disbiose/microbiologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Ácidos Graxos Voláteis/metabolismo , Comportamento Alimentar/fisiologia , Feminino , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos
16.
Nat Rev Gastroenterol Hepatol ; 18(12): 885-902, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34580480

RESUMO

Autoimmune diseases, including inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, have distinct clinical presentations but share underlying patterns of gut microbiome perturbation and intestinal barrier dysfunction. Their potentially common microbial drivers advocate for treatment strategies aimed at restoring appropriate microbiome function, but individual variation in host factors makes a uniform approach unlikely. In this Perspective, we consolidate knowledge on diet-microbiome interactions in local inflammation, gut microbiota imbalance and host immune dysregulation. By understanding and incorporating the effects of individual dietary components on microbial metabolic output and host physiology, we examine the potential for diet-based therapies for autoimmune disease prevention and treatment. We also discuss tools targeting the gut microbiome, such as faecal microbiota transplantation, probiotics and orthogonal niche engineering, which could be optimized using custom dietary interventions. These approaches highlight paths towards leveraging diet for precise engineering of the gut microbiome at a time of increasing autoimmune disease.


Assuntos
Doenças Autoimunes/microbiologia , Doenças Autoimunes/terapia , Dieta/métodos , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/fisiopatologia , Terapia Combinada , Transplante de Microbiota Fecal , Humanos , Prebióticos , Prevenção Primária/métodos , Probióticos/uso terapêutico
17.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202227

RESUMO

The consumption of prebiotic fibers to modulate the human gut microbiome is a promising strategy to positively impact health. Nevertheless, given the compositional complexity of the microbiome and its inter-individual variances, generalized recommendations on the source or amount of fiber supplements remain vague. This problem is further compounded by availability of tractable in vitro and in vivo models to validate certain fibers. We employed a gnotobiotic mouse model containing a 14-member synthetic human gut microbiome (SM) in vivo, characterized a priori for their ability to metabolize a collection of fibers in vitro. This SM contains 14 different strains belonging to five distinct phyla. Since soluble purified fibers have been a common subject of studies, we specifically investigated the effects of dietary concentrated raw fibers (CRFs)-containing fibers from pea, oat, psyllium, wheat and apple-on the compositional and functional alterations in the SM. We demonstrate that, compared to a fiber-free diet, CRF supplementation increased the abundance of fiber-degraders, namely Eubacterium rectale, Roseburia intestinalis and Bacteroides ovatus and decreased the abundance of the mucin-degrader Akkermansia muciniphila. These results were corroborated by a general increase of bacterial fiber-degrading α-glucosidase enzyme activity. Overall, our results highlight the ability of CRFs to enhance the microbial fiber-degrading capacity.


Assuntos
Fibras na Dieta/metabolismo , Microbioma Gastrointestinal , Prebióticos , Animais , Bactérias , Dieta , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Humanos , Camundongos , Polissacarídeos/metabolismo
18.
STAR Protoc ; 2(2): 100607, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34179836

RESUMO

Reproducible in vivo models are necessary to address functional aspects of the gut microbiome in various diseases. Here, we present a gnotobiotic mouse model that allows for the investigation of specific microbial functions within the microbiome. We describe how to culture 14 different well-characterized human gut species and how to verify their proper colonization in germ-free mice. This protocol can be modified to add or remove certain species of interest to investigate microbial mechanistic details in various disease models. For complete details on the use and execution of this protocol, please refer to Desai et al. (2016).


Assuntos
Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Vida Livre de Germes , Humanos , Camundongos , Filogenia
20.
STAR Protoc ; 2(1): 100326, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665621

RESUMO

The gut microbiome expresses a multitude of enzymes degrading polysaccharides in dietary plant fibers and in host-secreted mucus. The quantitative detection of these glycan-degrading enzymes in fecal samples is important to elucidate the functional activity of the microbiome in health and disease. We describe a protocol for detection of glycan-degrading enzyme activity in mouse and human fecal samples, namely sulfatase and four carbohydrate-active enzymes. Assessing their activity can inform treatment strategies for diseases linked to the gut microbiome. For complete details on the use and execution of this protocol, please refer to Desai et al. (2016).


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Fezes , Glicosídeo Hidrolases/metabolismo , Microbiota , Animais , Fezes/enzimologia , Fezes/microbiologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA