Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7779, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012180

RESUMO

Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.


Assuntos
Radiação Cósmica , Exposição à Radiação , Voo Espacial , Camundongos , Masculino , Animais , Humanos , Astronautas , Radiação Cósmica/efeitos adversos , Cognição
2.
Prog Earth Planet Sci ; 8(1): 56, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722120

RESUMO

This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. It is a part of the effort of the International Study of Earth-affecting Solar Transients (ISEST) project, sponsored by the SCOSTEP/VarSITI program (2014-2018). The Sun-Earth is an integrated physical system in which the space environment of the Earth sustains continuous influence from mass, magnetic field, and radiation energy output of the Sun in varying timescales from minutes to millennium. This article addresses short timescale events, from minutes to days that directly cause transient disturbances in the Earth's space environment and generate intense adverse effects on advanced technological systems of human society. Such transient events largely fall into the following four types: (1) solar flares, (2) coronal mass ejections (CMEs) including their interplanetary counterparts ICMEs, (3) solar energetic particle (SEP) events, and (4) stream interaction regions (SIRs) including corotating interaction regions (CIRs). In the last decade, the unprecedented multi-viewpoint observations of the Sun from space, enabled by STEREO Ahead/Behind spacecraft in combination with a suite of observatories along the Sun-Earth lines, have provided much more accurate and global measurements of the size, speed, propagation direction, and morphology of CMEs in both 3D and over a large volume in the heliosphere. Many CMEs, fast ones, in particular, can be clearly characterized as a two-front (shock front plus ejecta front) and three-part (bright ejecta front, dark cavity, and bright core) structure. Drag-based kinematic models of CMEs are developed to interpret CME propagation in the heliosphere and are applied to predict their arrival times at 1 AU in an efficient manner. Several advanced MHD models have been developed to simulate realistic CME events from the initiation on the Sun until their arrival at 1 AU. Much progress has been made on detailed kinematic and dynamic behaviors of CMEs, including non-radial motion, rotation and deformation of CMEs, CME-CME interaction, and stealth CMEs and problematic ICMEs. The knowledge about SEPs has also been significantly improved. An outlook of how to address critical issues related to Earth-affecting solar transients concludes this article.

3.
Rev Sci Instrum ; 89(11): 114503, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30501281

RESUMO

This paper describes a novel electrostatic analyzer concept to measure suprathermal ions, a Double-Cusp Analyzer for SupraThermals (DCAST) that employs a double-shell cusp structure. Due to the necessity of measuring higher energy levels to cover the suprathermal range, existing ion instruments require greater size and mass. Moreover, observations of potentially low-flux suprathermal ions require a long integration time to fully characterize key ion properties in the plasmas (e.g., anisotropy and energy spectrum) with necessary counting statistics. DCAST covers the suprathermal energy range (2-300 keV/q) spanning heated solar wind and pickup ions; it enables a high cadence, high angular resolution, and wide angle coverage measurement while conserving resources such as mass and size. As a proof-of-concept study, the performance of a prototype DCAST was verified by laboratory measurements (geometric factor, K-factor, and energy resolution), which also involved investigating noise characteristics coming from cross-sector contamination and foreground extreme ultra-violet photons. To understand the specific characteristics of the double-shell type design, the inner and outer sector voltage ratio (R V ) effects were examined in terms of the electro-static analyzer performance.

4.
Rev Sci Instrum ; 86(8): 083302, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26329176

RESUMO

This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1-40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. By replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA