Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 946: 174216, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38914319

RESUMO

Human-wildlife conflicts (HWC) are increasing and are potentially harmful to both people and wildlife. Understanding the current and potential distribution of wildlife species involved in HWC, such as carnivores, is essential for implementing management and conservation measures for such species. In this study, we assessed both the current distribution and potential distribution (forecast) of the Egyptian mongoose (Herpestes ichneumon) in the central part of the Iberian Peninsula. We acquired data concerning mongoose occurrences through an online questionnaire sent to environmental rangers. We used the municipality level as the sampling unit because all municipalities within the study area were covered at least by one ranger. Using the information provided by rangers (i.e. occurrences in their municipalities), we constructed environmental favourability distribution models to assess current and potential mongoose distribution through current distribution models (CDM) and ecological models (EM), respectively. >300 rangers participated in the survey and mongooses were reported in a total of 181 of 921 municipalities studied. The CDM model showed a current distribution mainly concentrated on the western part of the study area, where intermediate-high favourability values predominated. The EM model revealed a wider potential distribution, including the south-east part of the study area, which was also characterised by intermediate-high favourability values. Our predictions were verified using independent data, including confirmation of mongoose reproduction by rangers, reports by other experts, and field sampling in some areas. Our innovative approach based on an online survey to rangers coupled with environmental favourability models is shown to be a useful methodology for assessing the current distribution of cryptic but expanding wildlife species, while also enabling estimations of future steps in their expansion. The approach proposed may help policy decision-makers seeking to ensure the conservation of expanding wildlife species, for example, by designing awareness campaigns in areas where the target species is expected to arrive.


Assuntos
Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Herpestidae , Distribuição Animal , Animais Selvagens , Espanha , Monitoramento Ambiental/métodos , Ecossistema
2.
Zoonoses Public Health ; 70(4): 365-368, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36852721

RESUMO

Tuberculosis caused by Mycobacterium bovis and other related mycobacteria has been reported in a wide range of mammals worldwide. In the case of the Herpestidae family, Mycobacterium mungi and M. bovis, both belonging to the Mycobacterium tuberculosis Complex, have been reported in banded mongooses (Mungos mungo) in Africa and in Egyptian mongooses (Herpestes ichneumon) in Portugal, respectively. Thus, we hypothesized that Tuberculosis may occur in Egyptian mongooses from Spain. Twenty-five found dead Egyptian mongooses were necropsied in order to detect macroscopic TB-compatible lesions and mandibular lymph nodes and lungs were cultured onto mycobacteria-specific growth media. We isolated M. bovis in 3/25 Egyptian mongooses (12.00%, IC95: 4.17-29.96%) and identified spoligotypes SB0121 (2/3) and SB0134 (1). No macroscopic TB-compatible lesions were observed. To the best of our knowledge, this is the first report of M. bovis in Egyptian mongoose in Spain, as well as the only study that includes spolygotyping in this species. Although the absence of visible lesions suggests a minor role of the Egyptian mongoose in Tuberculosis epidemiology, further research thereon is encouraged.


Assuntos
Herpestidae , Mycobacterium bovis , Tuberculose , Animais , Herpestidae/microbiologia , Espanha/epidemiologia , Tuberculose/epidemiologia , Tuberculose/veterinária , Portugal
3.
Sci Total Environ ; 750: 142260, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182217

RESUMO

The ingestion of lead (Pb) ammunition is the most important exposure pathway to this metal in birds and involve negative consequences to their health. We have performed a passive monitoring of Pb poisoning in birds of prey by measuring liver (n = 727) and blood (n = 32) Pb levels in individuals of 16 species found dead or sick in Spain between 2004 and 2020. We also performed an active monitoring by measuring blood Pb levels and biomarkers of haem biosynthesis, phosphorus (P) and calcium (Ca) metabolism, oxidative stress and immune function in individuals (n = 194) of 9 species trapped alive in the field between 2016 and 2017. Passive monitoring results revealed some species with liver Pb levels associated with severe clinical poisoning (>30 µg/g d.w. of Pb): Eurasian griffon vulture (27/257, 10.5%), red kite (1/132, 0.8%), golden eagle (4/38, 10.5%), and Northern goshawk (1/8, 12.5%). The active monitoring results showed that individuals of bearded vulture (1/3, 33.3%), Eurasian griffon vulture (87/118, 73.7%), Spanish imperial eagle (1/6, 16.7%) and red kite (1/18, 5.6%) had abnormal blood Pb levels (>20 µg/dL). Blood Pb levels increased with age, and both monitoring methods showed seasonality in Pb exposure associated with a delayed effect of the hunting season. In Eurasian griffon, blood Pb concentration was associated with lower δ-ALAD activity in blood and P levels in plasma, and with higher blood lipid peroxidation and plasma carotenoid levels in agreement with other experimental and field studies in Pb-exposed birds. The study reveals that Pb poisoning is a significant cause of death and sublethal effects on haem biosynthesis, P metabolism and oxidative stress in birds of prey in Spain.


Assuntos
Águias , Intoxicação por Chumbo , Animais , Monitoramento Ambiental , Humanos , Chumbo/toxicidade , Intoxicação por Chumbo/veterinária , Estresse Oxidativo , Espanha/epidemiologia
4.
Ecol Evol ; 9(8): 4739-4748, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031940

RESUMO

The estimation of abundance of wildlife populations is an essential part of ecological research and monitoring. Spatially explicit capture-recapture (SCR) models are widely used for abundance and density estimation, frequently through individual identification of target species using camera-trap sampling.Generalized spatial mark-resight (Gen-SMR) is a recently developed SCR extension that allows for abundance estimation when only a subset of the population is recognizable by artificial or natural marks. However, in many cases, it is not possible to read the marks in camera-trap pictures, even though individuals can be recognized as marked. We present a new extension of Gen-SMR that allows for this type of incomplete identification.We used simulation to assess how the number of marked individuals and the individual identification rate influenced bias and precision. We demonstrate the model's performance in estimating red fox (Vulpes vulpes) density with two empirical datasets characterized by contrasting densities and rates of identification of marked individuals. According to the simulations, accuracy increases with the number of marked individuals (m), but is less sensitive to changes in individual identification rate (δ). In our case studies of red fox density estimation, we obtained a posterior mean of 1.60 (standard deviation SD: 0.32) and 0.28 (SD: 0.06) individuals/km2, in high and low density, with an identification rate of 0.21 and 0.91, respectively.This extension of Gen-SMR is broadly applicable as it addresses the common problem of incomplete identification of marked individuals during resighting surveys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA