Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Heliyon ; 9(8): e18270, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520955

RESUMO

Bats serve as reservoirs for many emerging viruses. Cressdnaviruses can infect a wide range of animals, including agricultural species, such as pigs, in which porcine circoviruses cause severe gastroenteritis. New cressdnaviruses have also attracted considerable attention recently, due to their involvement with infectious diseases. However, little is known about their host range and many cressdnaviruses remain poorly characterized. We identified and characterized 11 contigs consisting of previously unknown cressdnaviruses from a rectal swab sample of a Cynopterus bat collected in Yunnan Province, China, in 2011. Full genomes of two cressdnaviruses (OQ267680, 2069 nt; OQ351951, 2382 nt), and a nearly complete genome for a third (OQ267683, 2361 nt) were obtained. Phylogenetic analyses and the characteristics of these viral genomes suggest a high degree of ssDNA virus diversity. These results shed light on cressdnavirus diversity and the probable role of Cynopterus bats as their hosts.

2.
Cell Rep ; 40(11): 111347, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103826

RESUMO

Since formation of the first proto-eukaryotes, gene repertoire and genome complexity have significantly increased. Among genetic elements responsible for this increase are tandem repeats. Here we describe a genome-wide analysis of large tandem repeats, called megasatellites, in 58 vertebrate genomes. Two bursts occurred, one after the radiation between Agnatha and Gnathostomata fishes and the second one in therian mammals. Megasatellites are enriched in subtelomeric regions and frequently encoded in genes involved in transcription regulation, intracellular trafficking, and cell membrane metabolism, reminiscent of what is observed in fungus genomes. The presence of many introns within young megasatellites suggests that an exon-intron DNA segment is first duplicated and amplified before accumulation of mutations in intronic parts partially erases the megasatellite in such a way that it becomes detectable only in exons. Our results suggest that megasatellite formation and evolution is a dynamic and still ongoing process in vertebrate genomes.


Assuntos
Evolução Molecular , Vertebrados , Animais , Éxons/genética , Genoma Fúngico , Íntrons/genética , Mamíferos/genética , Vertebrados/genética
3.
Viruses ; 14(9)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36146820

RESUMO

Yellow fever remains a public-health threat in remote regions of Africa. Here, we report the identification and genetic characterisation of one yellow-fever case observed during the investigation of a cluster of nine suspected haemorrhagic fever cases in a village in the Central African Republic. Samples were tested using real-time RT-PCR targeting the main African haemorrhagic fever viruses. Following negative results, we attempted virus isolation on VERO E6 cells and new-born mice and rescreened the samples using rRT-PCR. The whole viral genome was sequenced using an Illumina NovaSeq 6000 sequencer. Yellow-fever virus (YFV) was isolated from one woman who reported farming activities in a forest setting several days before disease onset. Phylogenetic analysis shows that this strain belongs to the East-Central African YFV genotype, with an estimated emergence some 63 years ago. Finally, five unique amino-acid changes are present in the capsid, envelop, NS1A, NS3, and NS4B proteins. More efforts are required to control yellow-fever re-emergence in resource-limited settings.


Assuntos
Febre Amarela , Animais , República Centro-Africana/epidemiologia , Humanos , Camundongos , Filogenia , População Rural , Febre Amarela/epidemiologia , Vírus da Febre Amarela/genética
4.
Gut Microbes ; 14(1): 2121577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36154446

RESUMO

Epidemiological projections point to acquisition of ever-expanding multidrug resistance (MDR) by Escherichia coli, a commensal of the digestive tract and a source of urinary tract pathogens. Bioinformatics analyses of a large collection of E. coli genomes from EnteroBase, enriched in clinical isolates of worldwide origins, suggest the Cytotoxic Necrotizing Factor 1 (CNF1)-toxin encoding gene, cnf1, is preferentially distributed in four common sequence types (ST) encompassing the pandemic E. coli MDR lineage ST131. This lineage is responsible for a majority of extraintestinal infections that escape first-line antibiotic treatment, with known enhanced capacities to colonize the gastrointestinal tract. Statistical projections based on this dataset point to a global expansion of cnf1-positive multidrug-resistant ST131 strains from subclade H30Rx/C2, accounting for a rising prevalence of cnf1-positive strains in ST131. Despite the absence of phylogeographical signals, cnf1-positive isolates segregated into clusters in the ST131-H30Rx/C2 phylogeny, sharing a similar profile of virulence factors and the same cnf1 allele. The suggested dominant expansion of cnf1-positive strains in ST131-H30Rx/C2 led us to uncover the competitive advantage conferred by cnf1 for gut colonization to the clinical strain EC131GY ST131-H30Rx/C2 versus cnf1-deleted isogenic strain. Complementation experiments showed that colon tissue invasion was compromised in the absence of deamidase activity on Rho GTPases by CNF1. Hence, gut colonization factor function of cnf1 was confirmed for another clinical strain ST131-H30Rx/C2. In addition, functional analysis of the cnf1-positive clinical strain EC131GY ST131-H30Rx/C2 and a cnf1-deleted isogenic strain showed no detectable impact of the CNF1 gene on bacterial fitness and inflammation during the acute phase of bladder monoinfection. Together these data argue for an absence of role of CNF1 in virulence during UTI, while enhancing gut colonization capacities of ST131-H30Rx/C2 and suggested expansion of cnf1-positive MDR isolates in subclade ST131-H30Rx/C2.


Assuntos
Toxinas Bacterianas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Microbioma Gastrointestinal , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Humanos , Fatores de Virulência/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas rho de Ligação ao GTP
5.
Sci Rep ; 12(1): 10768, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750759

RESUMO

Monkeypox is an emerging and neglected zoonotic disease whose number of reported cases has been gradually increasing in Central Africa since 1980. This disease is caused by the monkeypox virus (MPXV), which belongs to the genus Orthopoxvirus in the family Poxviridae. Obtaining molecular data is particularly useful for establishing the relationships between the viral strains involved in outbreaks in countries affected by this disease. In this study, we evaluated the use of the MinION real-time sequencer as well as different polishing tools on MinION-sequenced genome for sequencing the MPXV genome originating from a pustular lesion in the context of an epidemic in a remote area of the Central African Republic. The reads corresponding to the MPXV genome were identified using two taxonomic classifiers, Kraken2 and Kaiju. Assembly of these reads led to a complete sequence of 196,956 bases, which is 6322 bases longer than the sequence previously obtained with Illumina sequencing from the same sample. The comparison of the two sequences showed mainly indels at the homopolymeric regions. However, the combined use of Canu with specific polishing tools such as Medaka and Homopolish was the best combination that reduced their numbers without adding mismatches. Although MinION sequencing is known to introduce a number of characteristic errors compared to Illumina sequencing, the new polishing tools allow a better-quality MinION-sequenced genome, thus to be used to help determine strain origin through phylogenetic analysis.


Assuntos
Mpox , Sequenciamento por Nanoporos , República Centro-Africana , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mpox/epidemiologia , Monkeypox virus/genética , Filogenia
6.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274698

RESUMO

Megasatellites are large tandem repeats found in all fungal genomes but especially abundant in the opportunistic pathogen Candida glabrata. They are encoded in genes involved in cell-cell interactions, either between yeasts or between yeast and human cells. In the present work, we have been using an iterative genetic system to delete several Candida glabrata megasatellite-containing genes and found that 2 of them were positively involved in adhesion to epithelial cells, whereas 3 genes negatively controlled adhesion. Two of the latter, CAGL0B05061g or CAGL0A04851g, were also negative regulators of yeast-to-yeast adhesion, making them central players in controlling Candida glabrata adherence properties. Using a series of synthetic Saccharomyces cerevisiae strains in which the FLO1 megasatellite was replaced by other tandem repeats of similar length but different sequences, we showed that the capacity of a strain to flocculate in liquid culture was unrelated to its capacity to adhere to epithelial cells or to invade agar. Finally, to understand how megasatellites were initially created and subsequently expanded, an experimental evolution system was set up, in which modified yeast strains containing different megasatellite seeds were grown in bioreactors for more than 200 generations and selected for their ability to sediment at the bottom of the culture tube. Several flocculation-positive mutants were isolated. Functionally relevant mutations included general transcription factors as well as a 230-kbp segmental duplication.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Candida glabrata/genética , Floculação , Genoma Fúngico , Humanos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Nucleic Acids Res ; 49(14): 8120-8134, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34233005

RESUMO

Microsatellite expansions are the cause of >20 neurological or developmental human disorders. Shortening expanded repeats using specific DNA endonucleases may be envisioned as a gene editing approach. Here, we measured the efficacy of several CRISPR-Cas nucleases to induce recombination within disease-related microsatellites, in Saccharomyces cerevisiae. Broad variations in nuclease performances were detected on all repeat tracts. Wild-type Streptococcus pyogenes Cas9 (SpCas9) was more efficient than Staphylococcus aureus Cas9 on all repeats tested, except (CAG)33. Cas12a (Cpf1) was the most efficient on GAA trinucleotide repeats, whereas GC-rich repeats were more efficiently cut by SpCas9. The main genetic factor underlying Cas efficacy was the propensity of the recognition part of the sgRNA to form a stable secondary structure, independently of its structural part. This suggests that such structures form in vivo and interfere with sgRNA metabolism. The yeast genome contains 221 natural CAG/CTG and GAA/CTT trinucleotide repeats. Deep sequencing after nuclease induction identified three of them as carrying statistically significant low frequency mutations, corresponding to SpCas9 off-target double-strand breaks.


Assuntos
Sistemas CRISPR-Cas/genética , Endonucleases/genética , Doenças Genéticas Inatas/genética , Repetições de Microssatélites/genética , Edição de Genes , Humanos , Mutação/genética , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética , Repetições de Trinucleotídeos/genética
8.
Sci Rep ; 11(1): 13085, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158533

RESUMO

Monkeypox is an emerging infectious disease, which has a clinical presentation similar to smallpox. In the two past decades, Central Africa has seen an increase in the frequency of cases, with many monkeypox virus (MPXV) isolates detected in the Democratic Republic of Congo (DRC) and the Central African Republic (CAR). To date, no complete MPXV viral genome has been published from the human cases identified in the CAR. The objective of this study was to sequence the full genome of 10 MPXV isolates collected during the CAR epidemics between 2001 and 2018 in order to determine their phylogenetic relationships among MPXV lineages previously described in Central Africa and West Africa. Our phylogenetic results indicate that the 10 CAR isolates belong to three lineages closely related to those found in DRC. The phylogenetic pattern shows that all of them emerged in the rainforest block of the Congo Basin. Since most human index cases in CAR occurred at the northern edge of western and eastern rainforests, transmissions from wild animals living in the rainforest is the most probable hypothesis. In addition, molecular dating estimates suggest that periods of intense political instability resulting in population movements within the country often associated also with increased poverty may have led to more frequent contact with host wild animals. The CAR socio-economic situation, armed conflicts and ecological disturbances will likely incite populations to interact more and more with wild animals and thus increase the risk of zoonotic spillover.


Assuntos
Monkeypox virus/genética , Mpox/genética , Evolução Biológica , República Centro-Africana/epidemiologia , Evolução Molecular , Genômica , Humanos , Mpox/epidemiologia , Monkeypox virus/isolamento & purificação , Monkeypox virus/patogenicidade , Filogenia
9.
Sci Rep ; 11(1): 10188, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986310

RESUMO

Arenaviruses represent a family of viruses that are naturally present in rodents belonging to subfamily Murinae, Neotominae or Sigmodontinae. Except for Lassa virus, little information is available on other Old-World arenaviruses. Here, we describe strain AnRB3214, a virus isolated from a presumed Praomys sp. rodent in the Central African Republic in 1981 and assigned to Ippy virus based on antigenic similarity. The strain was simultaneously sequenced on Illumina NovaSeq 6000 and MinION Mk1B devices and analysed with various bioinformatics tools. We show that the best genome coverage and depth were obtained with the Kaiju and Minimap2 classification and identification tools, on either the MinION or the Illumina reads. The genetic analysis of AnRB3214 fragments showed 68% to 79% similarity with the Mobala and Gairo mammarenaviruses at the nucleic acid level. Strain AnRB3214 had a truncated nucleoprotein smaller than that of other Old World arenaviruses. Molecular clock analysis suggests that this strain diverged from Mobala virus at least 400 years ago. Finally, this study illustrates the importance of genomics in the identification of archived viruses and expands on the diversity of African arenaviruses, because strain AnRB3214 is either a variant or a close relative of Mobala virus, and not Ippy virus.


Assuntos
Arenavirus/genética , Arenavirus/isolamento & purificação , Murinae/genética , Animais , Arenaviridae/genética , Infecções por Arenaviridae/imunologia , Sequência de Bases/genética , Biologia Computacional/métodos , Murinae/virologia , Filogenia , Análise de Sequência de DNA/métodos
10.
PLoS Genet ; 16(7): e1008924, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32673314

RESUMO

Microsatellites are short tandem repeats, ubiquitous in all eukaryotes and represent ~2% of the human genome. Among them, trinucleotide repeats are responsible for more than two dozen neurological and developmental disorders. Targeting microsatellites with dedicated DNA endonucleases could become a viable option for patients affected with dramatic neurodegenerative disorders. Here, we used the Streptococcus pyogenes Cas9 to induce a double-strand break within the expanded CTG repeat involved in myotonic dystrophy type 1, integrated in a yeast chromosome. Repair of this double-strand break generated unexpected large chromosomal deletions around the repeat tract. These deletions depended on RAD50, RAD52, DNL4 and SAE2, and both non-homologous end-joining and single-strand annealing pathways were involved. Resection and repair of the double-strand break (DSB) were totally abolished in a rad50Δ strain, whereas they were impaired in a sae2Δ mutant, only on the DSB end containing most of the repeat tract. This observation demonstrates that Sae2 plays significant different roles in resecting a DSB end containing a repeated and structured sequence as compared to a non-repeated DSB end. In addition, we also discovered that gene conversion was less efficient when the DSB could be repaired using a homologous template, suggesting that the trinucleotide repeat may interfere with gene conversion too. Altogether, these data show that SpCas9 may not be the best choice when inducing a double-strand break at or near a microsatellite, especially in mammalian genomes that contain many more dispersed repeated elements than the yeast genome.


Assuntos
Quebras de DNA de Cadeia Dupla , Distrofia Miotônica/genética , Recombinação Genética , Repetições de Trinucleotídeos/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Deleção Cromossômica , Cromossomos Fúngicos/genética , Reparo do DNA por Junção de Extremidades/genética , DNA Ligase Dependente de ATP/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Conversão Gênica/genética , Genoma Humano/genética , Humanos , Distrofia Miotônica/patologia , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Expansão das Repetições de Trinucleotídeos/genética
11.
Proc Natl Acad Sci U S A ; 116(27): 13582-13591, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209035

RESUMO

Intracellular trafficking pathways in eukaryotic cells are essential to maintain organelle identity and structure, and to regulate cell communication with its environment. Shigella flexneri invades and subverts the human colonic epithelium by the injection of virulence factors through a type 3 secretion system (T3SS). In this work, we report the multiple effects of two S. flexneri effectors, IpaJ and VirA, which target small GTPases of the Arf and Rab families, consequently inhibiting several intracellular trafficking pathways. IpaJ and VirA induce large-scale impairment of host protein secretion and block the recycling of surface receptors. Moreover, these two effectors decrease clathrin-dependent and -independent endocytosis. Therefore, S. flexneri infection induces a global blockage of host cell intracellular transport, affecting the exchange between cells and their external environment. The combined action of these effectors disorganizes the epithelial cell polarity, disturbs epithelial barrier integrity, promotes multiple invasion events, and enhances the pathogen capacity to penetrate into the colonic tissue in vivo.


Assuntos
Disenteria Bacilar/fisiopatologia , Mucosa Intestinal/microbiologia , Shigella flexneri , Transporte Biológico , Células CACO-2 , Polaridade Celular , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Colo/fisiopatologia , Disenteria Bacilar/metabolismo , Disenteria Bacilar/patologia , Endocitose , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia
12.
Sci Rep ; 9(1): 1504, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728408

RESUMO

Human papillomavirus (HPV) is recognised as the cause of precancerous and cancerous cervical lesions. Furthermore, in high-grade lesions, HPV is frequently integrated in the host cell genome and associated with the partial or complete loss of the E1 and E2 genes, which regulate the activity of viral oncoproteins E6 and E7. In this study, using a double-capture system followed by high-throughput sequencing, we determined the HPV integration status present in liquid-based cervical smears in an urban Gabonese population. The main inclusion criteria were based on cytological grade and the detection of the HPV16 genotype using molecular assays. The rate of HPV integration in the host genome varied with cytological grade: 85.7% (6/7), 71.4% (5/7), 66.7% (2/3) 60% (3/5) and 30.8% (4/13) for carcinomas, HSIL, ASCH, LSIL and ASCUS, respectively. For high cytological grades (carcinomas and HSIL), genotypes HPV16 and 18 represented 92.9% of the samples (13/14). The integrated form of HPV16 genotype was mainly found in high-grade lesions in 71.4% of samples regardless of cytological grade. Minority genotypes (HPV33, 51, 58 and 59) were found in LSIL samples, except HPV59, which was identified in one HSIL sample. Among all the HPV genotypes identified after double capture, 10 genotypes (HPV30, 35, 39, 44, 45, 53, 56, 59, 74 and 82) were detected only in episomal form. Our study revealed that the degree of HPV integration varies with cervical cytological grade. The integration event might be a potential clinical prognostic biomarker for the prediction of the progression of neoplastic lesions.


Assuntos
Citodiagnóstico/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Displasia do Colo do Útero/virologia , Neoplasias do Colo do Útero/virologia , Integração Viral/genética , DNA Viral/análise , DNA Viral/genética , Feminino , Gabão/epidemiologia , Genótipo , Humanos , Incidência , Papillomaviridae/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Análise de Sequência de DNA/métodos , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/epidemiologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/patologia
13.
Proc Natl Acad Sci U S A ; 116(6): 2265-2273, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659146

RESUMO

The genus Legionella comprises 65 species, among which Legionella pneumophila is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 Legionella genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Legionella Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to L. pneumophila and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.


Assuntos
Genoma Bacteriano , Legionella/fisiologia , Legionelose/microbiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/genética , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Humanos , Espaço Intracelular/microbiologia , Legionella/classificação , Filogenia , Domínios Proteicos
14.
Mol Syst Biol ; 14(7): e8293, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012718

RESUMO

In chromosome conformation capture experiments (Hi-C), the accuracy with which contacts are detected varies due to the uneven distribution of restriction sites along genomes. In addition, repeated sequences or homologous regions remain indistinguishable because of the ambiguities they introduce during the alignment of the sequencing reads. We addressed both limitations by designing and engineering 144 kb of a yeast chromosome with regularly spaced restriction sites (Syn-HiC design). In the Syn-HiC region, Hi-C signal-to-noise ratio is enhanced and can be used to measure the shape of an unbiased distribution of contact frequencies, allowing to propose a robust definition of a Hi-C experiment resolution. The redesigned region is also distinguishable from its native homologous counterpart in an otherwise isogenic diploid strain. As a proof of principle, we tracked homologous chromosomes during meiotic prophase in synchronized and pachytene-arrested cells and captured important features of their spatial reorganization, such as chromatin restructuration into arrays of Rec8-delimited loops, centromere declustering, individualization, and pairing. Overall, we illustrate the promises held by redesigning genomic regions to explore complex biological questions.


Assuntos
Cromossomos Fúngicos/genética , Schizosaccharomyces/fisiologia , Tamanho do Genoma , Meiose , Schizosaccharomyces/genética , Biologia de Sistemas/métodos
15.
Biol Res ; 49(1): 39, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27605096

RESUMO

BACKGROUND: New sequencing technologies have opened the way to the discovery and the characterization of pathogenic viruses in clinical samples. However, the use of these new methods can require an amplification of viral RNA prior to the sequencing. Among all the available methods, the procedure based on the use of Phi29 polymerase produces a huge amount of amplified DNA. However, its major disadvantage is to generate a large number of chimeric sequences which can affect the assembly step. The pre-process method proposed in this study strongly limits the negative impact of chimeric reads in order to obtain the full-length of viral genomes. FINDINGS: Three different assembly softwares (ABySS, Ray and SPAdes) were tested for their ability to correctly assemble the full-length of viral genomes. Although in all cases, our pre-processed method improved genome assembly, only its combination with the use of SPAdes allowed us to obtain the full-length of the viral genomes tested in one contig. CONCLUSIONS: The proposed pipeline is able to overcome drawbacks due to the generation of chimeric reads during the amplification of viral RNA which considerably improves the assembling of full-length viral genomes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Genoma Viral , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral , Análise de Sequência de RNA/métodos , Montagem de Vírus , Alphavirus/genética , República Centro-Africana , Biologia Computacional , Mapeamento de Sequências Contíguas , Mengovirus/genética , Valores de Referência , Reprodutibilidade dos Testes , Software
16.
Biol. Res ; 49: 1-8, 2016. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-950865

RESUMO

BACKGROUND: New sequencing technologies have opened the way to the discovery and the characterization of pathogenic viruses in clinical samples. However, the use of these new methods can require an amplification of viral RNA prior to the sequencing. Among all the available methods, the procedure based on the use of Phi29 polymerase produces a huge amount of amplified DNA. However, its major disadvantage is to generate a large number of chimeric sequences which can affect the assembly step. The pre-process method proposed in this study strongly limits the negative impact of chimeric reads in order to obtain the full-length of viral genomes. FINDINGS: Three different assembly softwares (ABySS, Ray and SPAdes) were tested for their ability to correctly assemble the full-length of viral genomes. Although in all cases, our pre-processed method improved genome assembly, only its combination with the use of SPAdes allowed us to obtain the full-length of the viral genomes tested in one contig. CONCLUSIONS: The proposed pipeline is able to overcome drawbacks due to the generation of chimeric reads during the amplification of viral RNA which considerably improves the assembling of full-length viral genomes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , RNA Viral , Genoma Viral , Análise de Sequência de RNA/métodos , Montagem de Vírus , Técnicas de Amplificação de Ácido Nucleico/métodos , Valores de Referência , Software , República Centro-Africana , Reprodutibilidade dos Testes , Alphavirus/genética , Mengovirus/genética , Biologia Computacional , Mapeamento de Sequências Contíguas
17.
BMC Biol ; 13: 69, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329162

RESUMO

BACKGROUND: The opportunistic pathogen Candida glabrata is a member of the Saccharomycetaceae yeasts. Like its close relative Saccharomyces cerevisiae, it underwent a whole-genome duplication followed by an extensive loss of genes. Its genome contains a large number of very long tandem repeats, called megasatellites. In order to determine the whole replication program of the C. glabrata genome and its general chromosomal organization, we used deep-sequencing and chromosome conformation capture experiments. RESULTS: We identified 253 replication fork origins, genome wide. Centromeres, HML and HMR loci, and most histone genes are replicated early, whereas natural chromosomal breakpoints are located in late-replicating regions. In addition, 275 autonomously replicating sequences (ARS) were identified during ARS-capture experiments, and their relative fitness was determined during growth competition. Analysis of ARSs allowed us to identify a 17-bp consensus, similar to the S. cerevisiae ARS consensus sequence but slightly more constrained. Megasatellites are not in close proximity to replication origins or termini. Using chromosome conformation capture, we also show that early origins tend to cluster whereas non-subtelomeric megasatellites do not cluster in the yeast nucleus. CONCLUSIONS: Despite a shorter cell cycle, the C. glabrata replication program shares unexpected striking similarities to S. cerevisiae, in spite of their large evolutionary distance and the presence of highly repetitive large tandem repeats in C. glabrata. No correlation could be found between the replication program and megasatellites, suggesting that their formation and propagation might not be directly caused by replication fork initiation or termination.


Assuntos
Candida glabrata/genética , Cromossomos Fúngicos , Replicação do DNA , Genoma Fúngico , Ciclo Celular/genética , Genes Fúngicos
19.
Vector Borne Zoonotic Dis ; 14(12): 862-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25514122

RESUMO

Zika virus (ZIKV) is an emerging pathogen belonging to the Spondweni serocomplex within the genus Flavivirus. It has been isolated from several mosquito species. Two lineages of ZIKV have been defined by polyprotein homology. Using high-throughput sequencing, we obtained and characterized three complete genomes of ZIKV isolated between 1976 and 1980 in the Central African Republic. The three viruses were isolated from two species of mosquito, Aedes africanus and Ae. opok. Two sequences from Ae. africanus had 99.9% nucleotide sequence identity and 100% amino acid identity, whereas the complete genome obtained from Ae. opok had 98.3% nucleotide identity and 99.4% amino acid identity with the other two genomes. Phylogenetic analysis based on the amino acid sequence of the polyprotein showed that the three ZIKV strains clustered together but diverged from all other ZIKV strains. Our molecular data suggest that a different subtype of West African ZIKV strains circulated in Aedes species in Central Africa.


Assuntos
Aedes/virologia , Insetos Vetores/virologia , Zika virus , Sequência de Aminoácidos , Animais , Sequência de Bases , República Centro-Africana/epidemiologia , Dados de Sequência Molecular , Filogenia , Zika virus/classificação , Zika virus/genética , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
20.
Genome Announc ; 2(5)2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25342688

RESUMO

Arboviral diseases are a major threat to human and animal health today. Analysis of whole-genome sequences of decades-old arboviral strains may bring new insights into the viral evolution that might have facilitated outbreaks. Here, we report the whole-genome sequences of two Middelburg viruses isolated several decades ago in the Central African Republic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA