Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Exp Bot ; 65(1): 323-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203356

RESUMO

The seed of Coffea arabica accumulates large amounts of cell wall storage polysaccharides (CWSPs) of the mannan family in the cell walls of the endosperm. The variability induced by the growing environment and extensive pairwise correlation analysis with stringent significance thresholds was used to investigate transcript-transcript and transcript-metabolite relationships among 26 sugar-related genes, and the amount of CWSPs and seven soluble low molecular weight carbohydrates in the developing coffee endosperm. A dense module of nine quantitatively co-expressed genes was detected at the mid-developmental stage when CWSPs accumulate. This module included the five genes of the core galactomannan synthetic machinery, namely genes coding for the enzymes needed to assemble the mannan backbone (mannan synthase, ManS), and genes that introduce the galactosyl side chains (galactosyltransferase, GMGT), modulate the post-depositional degree of galactose substitution (α-galactosidase), and produce the nucleotide sugar building blocks GDP-mannose and UDP-galactose (mannose-1P guanyltransferase and UDP-glucose 4'-epimerase, respectively). The amount of CWSPs stored in the endosperm at the onset of their accumulation was primarily and quantitatively modulated at the transcriptional level (i.e. positively correlated with the expression level of these key galactomannan biosynthetic genes). This analysis also suggests a role for sorbitol and raffinose family oligosaccharides as transient auxiliary sources of building blocks for galactomannan synthesis. Finally, a microarray-based analysis of the developing seed transcriptome revealed that all genes of the core galactomannan synthesis machinery grouped in a single cluster of 209 co-expressed genes. Analysis of the gene composition of this cluster revealed remarkable functional coherence and identified transcription factors that putatively control galactomannan biosynthesis in coffee.


Assuntos
Coffea/genética , Regulação da Expressão Gênica de Plantas/genética , Mananas/genética , Proteínas de Plantas/genética , Vias Biossintéticas/genética , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Coffea/metabolismo , Endosperma/genética , Endosperma/metabolismo , Galactose/análogos & derivados , Perfilação da Expressão Gênica , Mananas/biossíntese , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/metabolismo , Rafinose/metabolismo , Regulon/genética , Sementes/genética , Sementes/metabolismo , Sorbitol/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Plant Cell Environ ; 33(7): 1220-33, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20199615

RESUMO

Developing Coffea arabica seeds accumulate large amounts of chlorogenic acids (CGAs) as a storage form of phenylpropanoid derivatives, making coffee a valuable model to investigate the metabolism of these widespread plant phenolics. However, developmental and environmental regulations of CGA metabolism are poorly understood. In the present work, the expression of selected phenylpropanoid genes, together with CGA isomer profiles, was monitored throughout seed development across a wide set of contrasted natural environments. Although CGA metabolism was controlled by major developmental factors, the mean temperature during seed development had a direct impact on the time-window of CGA biosynthesis, as well as on final CGA isomer composition through subtle transcriptional regulations. We provide evidence that the variability induced by the environment is a useful tool to test whether CGA accumulation is quantitatively modulated at the transcriptional level, hence enabling detection of rate-limiting transcriptional steps [quantitative trait transcripts (QTTs)] for CGA biosynthesis. Variations induced by the environment also enabled a better description of the phenylpropanoid gene transcriptional network throughout seed development, as well as the detection of three temporally distinct modules of quantitatively co-expressed genes. Finally, analysis of metabolite-to-metabolite relationships revealed new biochemical characteristics of the isomerization steps that remain uncharacterized at the gene level.


Assuntos
Ácido Clorogênico/metabolismo , Coffea/genética , Meio Ambiente , Redes Reguladoras de Genes , Característica Quantitativa Herdável , Coffea/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , RNA de Plantas/genética , Sementes/genética , Sementes/metabolismo , Temperatura , Ativação Transcricional
3.
New Phytol ; 182(1): 146-162, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19207685

RESUMO

* The genomic era facilitates the understanding of how transcriptional networks are interconnected to program seed development and filling. However, to date, little information is available regarding dicot seeds with a transient perisperm and a persistent, copious endosperm. Coffea arabica is the subject of increasing genomic research and is a model for nonorthodox albuminous dicot seeds of tropical origin. * The aim of this study was to reconstruct the metabolic pathways involved in the biosynthesis of the main coffee seed storage compounds, namely cell wall polysaccharides, triacylglycerols, sucrose, and chlorogenic acids. For this purpose, we integrated transcriptomic and metabolite analyses, combining real-time RT-PCR performed on 137 selected genes (of which 79 were uncharacterized in Coffea) and metabolite profiling. * Our map-drawing approach derived from model plants enabled us to propose a rationale for the peculiar traits of the coffee endosperm, such as its unusual fatty acid composition, remarkable accumulation of chlorogenic acid and cell wall polysaccharides. * Comparison with the developmental features of exalbuminous seeds described in the literature revealed that the two seed types share important regulatory mechanisms for reserve biosynthesis, independent of the origin and ploidy level of the storage tissue.


Assuntos
Coffea/embriologia , Coffea/metabolismo , Redes e Vias Metabólicas , Sementes/metabolismo , Clima Tropical , Acil Coenzima A/biossíntese , Metabolismo dos Carboidratos , Ácido Clorogênico/metabolismo , Coffea/genética , Retículo Endoplasmático/metabolismo , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lignina/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Oxirredução , Óleos de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/embriologia , Amido/metabolismo , Sacarose/metabolismo , Transcrição Gênica
4.
Plant Mol Biol ; 66(1-2): 105-24, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18026845

RESUMO

Due to its economic importance, Coffea arabica is becoming the subject of increasing genomic research and, in particular, the genes involved in the final chemical composition of the bean and the sensorial quality of the coffee beverage. The aim of the present study was to decipher the transcriptional networks that govern the development of the C. arabica seed, a model for non-orthodox albuminous seeds of tropical origin. For this purpose, we developed a transcriptomic approach combining two techniques: targeted cDNA arrays, containing 266 selected candidate gene sequences, and real-time RT-PCR on a large subset of 111 genes. The combination of the two techniques allowed us to limit detection of false positives and to reveal the advantages of using large real-time RT-PCR screening. Multivariate analysis was conducted on both datasets and results were broadly convergent. First, principle component analysis (PCA) revealed a dramatic re-programming of the transcriptional machinery between early cell division and elongation, storage and maturation phases. Second, hierarchical clustering analysis (HCA) led to the identification of 11 distinct patterns of gene expression during seed development as well as to the detection of genes expressed at specific developmental stages that can be used as functional markers of phenological changes. In addition, this study led to the description of gene expression profiles for quality-related genes, most of them formerly uncharacterised in Coffea. Their involvement in storage compound synthesis and accumulation during endosperm development and final metabolic re-adjustments during maturation is discussed.


Assuntos
Coffea/embriologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sementes/crescimento & desenvolvimento , Transcrição Gênica , Sequência de Bases , Coffea/genética , DNA Complementar , Genes de Plantas , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA