Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 300(3): 105716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311174

RESUMO

FUS and TDP-43 are two self-adhesive aggregation-prone mRNA-binding proteins whose pathological mutations have been linked to neurodegeneration. While TDP-43 and FUS form reversible mRNA-rich compartments in the nucleus, pathological mutations promote their respective cytoplasmic aggregation in neurons with no apparent link between the two proteins except their intertwined function in mRNA processing. By combining analyses in cellular context and at high resolution in vitro, we unraveled that TDP-43 is specifically recruited in FUS assemblies to form TDP-43-rich subcompartments but without reciprocity. The presence of mRNA provides an additional scaffold to promote the mixing between TDP-43 and FUS. Accordingly, we also found that the pathological truncated form of TDP-43, TDP-25, which has an impaired RNA-binding ability, no longer mixes with FUS. Together, these results suggest that the binding of FUS along nascent mRNAs enables TDP-43, which is highly aggregation-prone, to mix with FUS phase to form mRNA-rich subcompartments. A functional link between FUS and TDP-43 may explain their common implication in amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Proteína FUS de Ligação a RNA , RNA , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
2.
Cell Rep ; 42(10): 113199, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804508

RESUMO

PARP-1 activation at DNA damage sites leads to the synthesis of long poly(ADP-ribose) (PAR) chains, which serve as a signal for DNA repair. Here we show that FUS, an RNA-binding protein, is specifically directed to PAR through its RNA recognition motif (RRM) to increase PAR synthesis by PARP-1 in HeLa cells after genotoxic stress. Using a structural approach, we also identify specific residues located in the FUS RRM, which can be PARylated by PARP-1 to control the level of PAR synthesis. Based on the results of this work, we propose a model in which, following a transcriptional arrest that releases FUS from nascent mRNA, FUS can be recruited by PARP-1 activated by DNA damage to stimulate PAR synthesis. We anticipate that this model offers new perspectives to understand the role of FET proteins in cancers and in certain neurodegenerative diseases such as amyotrophic lateral sclerosis.


Assuntos
Dano ao DNA , Poli Adenosina Difosfato Ribose , Poli(ADP-Ribose) Polimerases , Proteína FUS de Ligação a RNA , Humanos , Reparo do DNA , Células HeLa , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Motivo de Reconhecimento de RNA , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
3.
Elife ; 122023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36651723

RESUMO

RNA-protein interactions (RPIs) are promising targets for developing new molecules of therapeutic interest. Nevertheless, challenges arise from the lack of methods and feedback between computational and experimental techniques during the drug discovery process. Here, we tackle these challenges by developing a drug screening approach that integrates chemical, structural and cellular data from both advanced computational techniques and a method to score RPIs in cells for the development of small RPI inhibitors; and we demonstrate its robustness by targeting Y-box binding protein 1 (YB-1), a messenger RNA-binding protein involved in cancer progression and resistance to chemotherapy. This approach led to the identification of 22 hits validated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) spectroscopy of which 11 were found to significantly interfere with the binding of messenger RNA (mRNA) to YB-1 in cells. One of our leads is an FDA-approved poly(ADP-ribose) polymerase 1 (PARP-1) inhibitor. This work shows the potential of our integrative approach and paves the way for the rational development of RPI inhibitors.


Assuntos
Neoplasias , RNA , Humanos , Simulação de Dinâmica Molecular , Descoberta de Drogas , RNA Mensageiro/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
4.
Cells ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36497190

RESUMO

DNA damage causes PARP1 activation in the nucleus to set up the machinery responsible for the DNA damage response. Here, we report that, in contrast to cytoplasmic PARPs, the synthesis of poly(ADP-ribose) by PARP1 opposes the formation of cytoplasmic mRNA-rich granules after arsenite exposure by reducing polysome dissociation. However, when mRNA-rich granules are pre-formed, whether in the cytoplasm or nucleus, PARP1 activation positively regulates their assembly, though without additional recruitment of poly(ADP-ribose) in stress granules. In addition, PARP1 promotes the formation of TDP-43- and FUS-rich granules in the cytoplasm, two RNA-binding proteins which form neuronal cytoplasmic inclusions observed in certain neurodegenerative diseases such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Together, the results therefore reveal a dual role of PARP1 activation which, on the one hand, prevents the early stage of stress granule assembly and, on the other hand, enables the persistence of cytoplasmic mRNA-rich granules in cells which may be detrimental in aging neurons.


Assuntos
Proteína FUS de Ligação a RNA , Grânulos de Estresse , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Estresse Oxidativo , Dano ao DNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Nucleic Acids Res ; 49(17): 10061-10081, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34469566

RESUMO

In the absence of the scanning ribosomes that unwind mRNA coding sequences and 5'UTRs, mRNAs are likely to form secondary structures and intermolecular bridges. Intermolecular base pairing of non polysomal mRNAs is involved in stress granule (SG) assembly when the pool of mRNAs freed from ribosomes increases during cellular stress. Here, we unravel the structural mechanisms by which a major partner of dormant mRNAs, YB-1 (YBX1), unwinds mRNA secondary structures without ATP consumption by using its conserved cold-shock domain to destabilize RNA stem/loops and its unstructured C-terminal domain to secure RNA unwinding. At endogenous levels, YB-1 facilitates SG disassembly during arsenite stress recovery. In addition, overexpression of wild-type YB-1 and to a lesser extent unwinding-defective mutants inhibit SG assembly in HeLa cells. Through its mRNA-unwinding activity, YB-1 may thus inhibit SG assembly in cancer cells and package dormant mRNA in an unfolded state, thus preparing mRNAs for translation initiation.


Assuntos
Sequências Repetidas Invertidas/genética , Iniciação Traducional da Cadeia Peptídica/genética , RNA Mensageiro/genética , Grânulos de Estresse/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Trifosfato de Adenosina/metabolismo , Arsenitos/toxicidade , Pareamento de Bases/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Ribossomos/metabolismo
6.
Commun Biol ; 4(1): 359, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742080

RESUMO

The RNA-binding protein Lin28 (Lin28a) is an important pluripotency factor that reprograms translation and promotes cancer progression. Although Lin28 blocks let-7 microRNA maturation, Lin28 also binds to a large set of cytoplasmic mRNAs directly. However, how Lin28 regulates the processing of many mRNAs to reprogram global translation remains unknown. We show here, using a structural and cellular approach, a mixing of Lin28 with YB-1 (YBX1) in the presence of mRNA owing to their cold-shock domain, a conserved ß-barrel structure that binds to ssRNA cooperatively. In contrast, the other RNA binding-proteins without cold-shock domains tested, HuR, G3BP-1, FUS and LARP-6, did not mix with YB-1. Given that YB-1 is the core component of dormant mRNPs, a model in which Lin28 gains access to mRNPs through its co-association with YB-1 to mRNA may provide a means for Lin28 to reprogram translation. We anticipate that the translational plasticity provided by mRNPs may contribute to Lin28 functions in development and adaptation of cancer cells to an adverse environment.


Assuntos
Grânulos Citoplasmáticos/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Neoplasias do Colo do Útero/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Sítios de Ligação , Proliferação de Células , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Feminino , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Proteína 1 de Ligação a Y-Box/genética
7.
Cell Rep ; 27(6): 1809-1821.e5, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067465

RESUMO

PARP-1 synthesizes long poly(ADP-ribose) chains (PAR) at DNA damage sites to recruit DNA repair factors. Among proteins relocated on damaged DNA, the RNA-binding protein FUS is one of the most abundant, raising the issue about its involvement in DNA repair. Here, we reconstituted the PARP-1/PAR/DNA system in vitro and analyzed at the single-molecule level the role of FUS. We demonstrate successively the dissociation of FUS from mRNA, its recruitment at DNA damage sites through its binding to PAR, and the assembly of damaged DNA-rich compartments. PARG, an enzyme family that hydrolyzes PAR, is sufficient to dissociate damaged DNA-rich compartments in vitro and initiates the nucleocytoplasmic shuttling of FUS in cells. We anticipate that, consistent with previous models, FUS facilitates DNA repair through the transient compartmentalization of DNA damage sites. The nucleocytoplasmic shuttling of FUS after the PARG-mediated compartment dissociation may participate in the formation of cytoplasmic FUS aggregates.


Assuntos
Dano ao DNA , Glicosídeo Hidrolases/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Compartimento Celular , Ativação Enzimática , Feminino , Células HeLa , Humanos , Peróxido de Hidrogênio/toxicidade , Modelos Biológicos , Fosforilação , Poli Adenosina Difosfato Ribose/metabolismo , Domínios Proteicos , Proteína FUS de Ligação a RNA/química
8.
Cells ; 9(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906126

RESUMO

The Y-box binding protein 1 (YB-1) is an RNA/DNA-binding protein regulating gene expression in the cytoplasm and the nucleus. Although mostly cytoplasmic, YB-1 accumulates in the nucleus under stress conditions. Its nuclear localization is associated with aggressiveness and multidrug resistance of cancer cells, which makes the understanding of the regulatory mechanisms of YB-1 subcellular distribution essential. Here, we report that inhibition of RNA polymerase II (RNAPII) activity results in the nuclear accumulation of YB-1 accompanied by its phosphorylation at Ser102. The inhibition of kinase activity reduces YB-1 phosphorylation and its accumulation in the nucleus. The presence of RNA in the nucleus is shown to be required for the nuclear retention of YB-1. Thus, the subcellular localization of YB-1 depends on its post-translational modifications (PTMs) and intracellular RNA distribution.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Serina/metabolismo , Transcrição Gênica , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Hibridização In Situ , Camundongos , Fosforilação , RNA Polimerase II/metabolismo , RNA Mensageiro/genética
9.
J Cell Sci ; 131(11)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29728455

RESUMO

Liquid-liquid phase separation enables compartmentalization of biomolecules in cells, notably RNA and associated proteins in the nucleus. Besides having critical functions in RNA processing, there is a major interest in deciphering the molecular mechanisms of compartmentalization orchestrated by RNA-binding proteins such as TDP-43 (also known as TARDBP) and FUS because of their link to neuron diseases. However, tools for probing compartmentalization in cells are lacking. Here, we developed a method to analyze the mixing and demixing of two different phases in a cellular context. The principle is the following: RNA-binding proteins are confined on microtubules and quantitative parameters defining their spatial segregation are measured along the microtubule network. Through this approach, we found that four mRNA-binding proteins, HuR (also known as ELAVL1), G3BP1, TDP-43 and FUS form mRNA-rich liquid-like compartments on microtubules. TDP-43 is partly miscible with FUS but immiscible with either HuR or G3BP1. We also demonstrate that mRNA is essential to capture the mixing and demixing behavior of mRNA-binding proteins in cells. Taken together, we show that microtubules can be used as platforms to understand the mechanisms underlying liquid-liquid phase separation and their deregulation in human diseases.


Assuntos
Células/metabolismo , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células/química , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Células HeLa , Humanos , Microtúbulos/química , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química
10.
ACS Nano ; 11(7): 7189-7200, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28657719

RESUMO

TDP-43 and FUS are two mRNA-binding proteins associated with neurodegenerative diseases that form cytoplasmic inclusions with prion-like properties in affected neurons. Documenting the early stages of the formation of TDP-43 or FUS protein aggregates and the role of mRNA stress granules that are considered as critical intermediates for protein aggregation is therefore of interest to understand disease propagation. Here, we developed a single molecule approach via atomic force microscopy (AFM), which provides structural information out of reach by fluorescence microscopy. In addition, the aggregation process can be probed in the test tube without separating the interacting partners, which would affect the thermodynamic equilibrium. The results demonstrate that isolated mRNA molecules serve as crucibles to promote TDP-43 and FUS multimerization. Their subsequent merging results in the formation of mRNA granules containing TDP-43 and FUS aggregates. Interestingly, TDP-43 or FUS protein aggregates can be released from mRNA granules by either YB-1 or G3BP1, two stress granule proteins that compete for the binding to mRNA with TDP-43 and FUS. Altogether, the results indicate that age-related successive assembly/disassembly of stress granules in neurons, regulated by mRNA-binding proteins such as YB-1 and G3BP1, could be a source of protein aggregation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Microscopia de Força Atômica/métodos , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
11.
Cell Mol Life Sci ; 73(19): 3745-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27076215

RESUMO

Opposing views have been proposed regarding the role of tau, the principal microtubule-associated protein in axons. On the one hand, tau forms cross-bridges at the interface between microtubules and induces microtubule bundling in neurons. On the other hand, tau is also considered a polymer brush which efficiently separates microtubules. In mature axons, microtubules are indeed arranged in parallel arrays and are well separated from each other. To reconcile these views, we developed a mechanistic model based on in vitro and cellular approaches combined to analytical and numerical analyses. The results indicate that tau forms long-range cross-bridges between microtubules under macromolecular crowding conditions. Tau cross-bridges prevent the redistribution of tau away from the interface between microtubules, which would have occurred in the polymer brush model. Consequently, the short-range attractive force between microtubules induced by macromolecular crowding is avoided and thus microtubules remain well separated from each other. Interestingly, in this unified model, tau diffusion on microtubules enables to keep microtubules evenly distributed in axonal sections at low tau levels.


Assuntos
Axônios/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Animais , Córtex Cerebral/metabolismo , Simulação por Computador , Difusão , Fluorescência , Substâncias Macromoleculares , Camundongos , Domínios Proteicos , Tubulina (Proteína)/metabolismo , Proteínas tau/química
12.
Sci Rep ; 5: 17304, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26610591

RESUMO

Microtubules are µm-long cylinders of about 25 nm in diameter which are present in the cytoplasm of eukaryotic cells. Here, we have developed a new method which uses these cylindrical structures as platforms to detect protein interactions in cells. The principle is simple: a protein of interest used as bait is brought to microtubules by fusing it to Tau, a microtubule-associated protein. The presence of a protein prey on microtubules then reveals an interaction between bait and prey. This method requires only a conventional optical microscope and straightforward fluorescence image analysis for detection and quantification of protein interactions. To test the reliability of this detection scheme, we used it to probe the interactions among three mRNA-binding proteins in both fixed and living cells and compared the results to those obtained by pull-down assays. We also tested whether the molecular interactions of Cx43, a membrane protein, can be investigated with this system. Altogether, the results indicate that microtubules can be used as platforms to detect protein interactions in mammalian cells, which should provide a basis for investigating pathogenic protein interactions involved in human diseases.


Assuntos
Microtúbulos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas de Ligação a RNA/metabolismo , Proteínas tau/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , DNA Helicases , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Microtúbulos/ultraestrutura , Poli A/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas tau/genética
13.
Nucleic Acids Res ; 43(19): 9457-73, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26271991

RESUMO

Translation is tightly regulated in cells for keeping adequate protein levels, this task being notably accomplished by dedicated mRNA-binding proteins recognizing a specific set of mRNAs to repress or facilitate their translation. To select specific mRNAs, mRNA-binding proteins can strongly bind to specific mRNA sequences/structures. However, many mRNA-binding proteins rather display a weak specificity to short and redundant sequences. Here we examined an alternative mechanism by which mRNA-binding proteins could inhibit the translation of specific mRNAs, using YB-1, a major translation regulator, as a case study. Based on a cooperative binding, YB-1 forms stable homo-multimers on some mRNAs while avoiding other mRNAs. Via such inhomogeneous distribution, YB-1 can selectively inhibit translation of mRNAs on which it has formed stable multimers. This novel mechanistic view on mRNA selection may be shared by other proteins considering the elevated occurrence of multimerization among mRNA-binding proteins. Interestingly, we also demonstrate how, by using the same mechanism, YB-1 can form multimers on specific DNA structures, which could provide novel insights into YB-1 nuclear functions in DNA repair and multi-drug resistance.


Assuntos
DNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Células Cultivadas , DNA/ultraestrutura , DNA Topoisomerases Tipo II/metabolismo , DNA Super-Helicoidal/metabolismo , Microscopia de Força Atômica , Ligação Proteica , Biossíntese de Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/ultraestrutura , Ratos , Proteína 1 de Ligação a Y-Box/química , Proteína 1 de Ligação a Y-Box/ultraestrutura
14.
Nucleic Acids Res ; 42(13): 8678-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25013173

RESUMO

The sequence of events leading to stress granule assembly in stressed cells remains elusive. We show here, using isotope labeling and ion microprobe, that proportionally more RNA than proteins are present in stress granules than in surrounding cytoplasm. We further demonstrate that the delivery of single strand polynucleotides, mRNA and ssDNA, to the cytoplasm can trigger stress granule assembly. On the other hand, increasing the cytoplasmic level of mRNA-binding proteins like YB-1 can directly prevent the aggregation of mRNA by forming isolated mRNPs, as evidenced by atomic force microscopy. Interestingly, we also discovered that enucleated cells do form stress granules, demonstrating that the translocation to the cytoplasm of nuclear prion-like RNA-binding proteins like TIA-1 is dispensable for stress granule assembly. The results lead to an alternative view on stress granule formation based on the following sequence of events: after the massive dissociation of polysomes during stress, mRNA-stabilizing proteins like YB-1 are outnumbered by the burst of nonpolysomal mRNA. mRNA freed of ribosomes thus becomes accessible to mRNA-binding aggregation-prone proteins or misfolded proteins, which induces stress granule formation. Within the frame of this model, the shuttling of nuclear mRNA-stabilizing proteins to the cytoplasm could dissociate stress granules or prevent their assembly.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Animais , Células Cultivadas , Citoplasma/química , Grânulos Citoplasmáticos/química , DNA de Cadeia Simples/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Inibidores de Proteassoma/farmacologia , Multimerização Proteica , Transporte Proteico , Proteínas/análise , Puromicina/farmacologia , RNA/análise , RNA Mensageiro/fisiologia , Ratos
15.
Mol Biol Cell ; 24(10): 1529-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23515223

RESUMO

In the organism, quiescent epithelial cells have the potential to resume cycling as a result of various stimuli, including wound healing or oxidative stress. Because quiescent cells have a low polyamine level, resuming their growth requires an increase of their intracellular polyamine levels via de novo polyamine synthesis or their uptake from plasma. Another alternative, explored here, is an intercellular exchange with polyamine-rich cycling cells via gap junctions. We show that polyamines promote gap junction communication between proliferating cells by promoting dynamical microtubule plus ends at the cell periphery and thus allow polyamine exchange between cells. In this way, cycling cells favor regrowth in adjacent cells deprived of polyamines. In addition, intercellular interactions mediated by polyamines can coordinate the translational response to oxidative stress through the formation of stress granules. Some putative in vivo consequences of polyamine-mediated intercellular interactions are also discussed regarding cancer invasiveness and tissue regeneration.


Assuntos
Proliferação de Células , Células Epiteliais/fisiologia , Junções Comunicantes/metabolismo , Estresse Oxidativo , Putrescina/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Transporte Biológico , Comunicação Celular , Linhagem Celular , Movimento Celular , Técnicas de Cocultura , Cicloexilaminas/farmacologia , Eflornitina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/ultraestrutura , Microtúbulos/metabolismo , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase , Poliaminas/metabolismo , Ratos , Espermina Sintase/antagonistas & inibidores , Fibras de Estresse/metabolismo
16.
J Biol Chem ; 287(4): 2446-58, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22147700

RESUMO

The massive uptake of compatible osmolytes such as betaine, taurine, and myo-inositol is a protective response shared by all eukaryotes exposed to hypertonic stress. Their accumulation results mostly from the expression of specific transporters triggered by the transcriptional factor NFAT5/TonEBP. This allows the recovery of the cell volume without increasing intracellular ionic strength. In this study we consider the assembly and dissociation of mRNA stress granules (SGs) in hypertonic-stressed cells and the role of compatible osmolytes. In agreement with in vitro results obtained on isolated mRNAs, both macromolecular crowding and a high ionic strength favor the assembly of SGs in normal rat kidney epithelial cells. However, after hours of constant hypertonicity, the slow accumulation in the cytoplasm of compatible osmolytes via specific transporters both reduces macromolecular crowding and ionic strength, thus leading to the progressive dissociation of SGs. In line with this, when cells are exposed to hypertonicity to accumulate a large amount of compatible osmolytes, the formation of SGs is severely impaired, and cells increase their chances of survival to another hypertonic episode. Altogether, these results indicate that the impact of compatible osmolytes on the mRNA-associated machineries and especially that associated with SGs may play an important role in cell resistance and adaption to hyperosmolarity in many tissues like kidney and liver.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Rim/metabolismo , Fígado/metabolismo , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Grânulos Citoplasmáticos/genética , Pressão Osmótica/fisiologia , RNA Mensageiro/genética , Ratos , Ovinos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Am J Physiol Cell Physiol ; 301(3): C705-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21677260

RESUMO

Upon hypertonic stress most often resulting from high salinity, cells need to balance their osmotic pressure by accumulating neutral osmolytes called compatible osmolytes like betaine, myo-inositol, and taurine. However, the massive uptake of compatible osmolytes is a slow process compared with other defense mechanisms related to oxidative or heat stress. This is especially critical for cycling cells as they have to double their volume while keeping a hospitable intracellular environment for the molecular machineries. Here we propose that clustered cells can accelerate the supply of compatible osmolytes to cycling cells via the transit, mediated by gap junctions, of compatible osmolytes from arrested to cycling cells. Both experimental results in epithelial normal rat kidney cells and theoretical estimations show that gap junctions indeed play a key role in cell adaptation to chronic hypertonicity. These results can provide basis for a better understanding of the functions of gap junctions in osmoregulation not only for the kidney but also for many other epithelia. In addition to this, we suggest that cancer cells that do not communicate via gap junctions poorly cope with hypertonic environments thus explaining the rare occurrence of cancer coming from the kidney medulla.


Assuntos
Adaptação Fisiológica/fisiologia , Células Epiteliais/fisiologia , Junções Comunicantes/fisiologia , Rim/fisiologia , Estresse Fisiológico/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Animais , Betaína/metabolismo , Betaína/farmacologia , Comunicação Celular/fisiologia , Contagem de Células , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Conexina 43/genética , Conexina 43/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/patologia , Ácido Glicirretínico/farmacologia , Células HeLa , Humanos , Soluções Hipertônicas , Inositol/metabolismo , Inositol/farmacologia , Rim/citologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Nocodazol/farmacologia , Ácidos Oleicos/farmacologia , RNA Interferente Pequeno/genética , Ratos , Solução Salina Hipertônica , Fibras de Estresse/metabolismo , Fibras de Estresse/patologia , Estresse Fisiológico/efeitos dos fármacos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
18.
Stem Cells ; 24(12): 2723-32, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16888281

RESUMO

Bone marrow (BM) transplantation was performed on a muscular mouse model of spinal muscular atrophy that had been created by mutating the survival of motor neuron gene (Smn) in myofibers only. This model is characterized by a severe myopathy and progressive loss of muscle fibers leading to paralysis. Transplantation of wild-type BM cells following irradiation at a low dose (6 Gy) improved motor capacity (+85%). This correlated with a normalization of myofiber number associated with a higher number of regenerating myofibers (1.6-fold increase) and an activation of CD34 and Pax7 satellite cells. However, BM cells had a very limited capacity to replace or fuse to mutant myofibers (2%). These data suggest that BM transplantation was able to attenuate the myopathic phenotype through an improvement of skeletal muscle regeneration of recipient mutant mice, a process likely mediated by a biological activity of BM-derived cells. This hypothesis was further supported by the capacity of muscle protein extracts from transplanted mutant mice to promote myoblast proliferation in vitro (1.6-fold increase). In addition, a tremendous upregulation of hepatocyte growth factor (HGF), which activates quiescent satellite cells, was found in skeletal muscle of transplanted mutants compared with nontransplanted mutants. Eventually, thanks to the Cre-loxP system, we show that BM-derived muscle cells were strong candidates harboring this biological activity. Taken together, our data suggest that a biological activity is likely involved in muscle regeneration improvement mediated by BM transplantation. HGF may represent an attractive paracrine mechanism to support this activity.


Assuntos
Transplante de Medula Óssea/métodos , Atrofia Muscular Espinal/patologia , Doenças Musculares/patologia , Distrofia Muscular Animal/patologia , Fenótipo , Animais , Antígenos CD34/imunologia , Células da Medula Óssea/citologia , Proliferação de Células , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Fator de Crescimento de Hepatócito/genética , Camundongos , Camundongos Mutantes , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Fator de Transcrição PAX7/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Notch/genética , Regeneração , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/patologia , Fator A de Crescimento do Endotélio Vascular/genética
19.
J Cell Biol ; 161(3): 571-82, 2003 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-12743106

RESUMO

Deletion of murine Smn exon 7, the most frequent mutation found in spinal muscular atrophy, has been directed to either both satellite cells, the muscle progenitor cells and fused myotubes, or fused myotubes only. When satellite cells were mutated, mutant mice develop severe myopathic process, progressive motor paralysis, and early death at 1 mo of age (severe mutant). Impaired muscle regeneration of severe mutants correlated with defect of myogenic precursor cells both in vitro and in vivo. In contrast, when satellite cells remained intact, mutant mice develop similar myopathic process but exhibit mild phenotype with median survival of 8 mo and motor performance similar to that of controls (mild mutant). High proportion of regenerating myofibers expressing SMN was observed in mild mutants compensating for progressive loss of mature myofibers within the first 6 mo of age. Then, in spite of normal contractile properties of myofibers, mild mutants develop reduction of muscle force and mass. Progressive decline of muscle regeneration process was no more able to counterbalance muscle degeneration leading to dramatic loss of myofibers. These data indicate that intact satellite cells remarkably improve the survival and motor performance of mutant mice suffering from chronic myopathy, and suggest a limited potential of satellite cells to regenerate skeletal muscle.


Assuntos
Diferenciação Celular/genética , Músculo Esquelético/crescimento & desenvolvimento , Atrofia Muscular Espinal/genética , Proteínas do Tecido Nervoso/deficiência , Regeneração/genética , Células Satélites de Músculo Esquelético/metabolismo , Animais , Animais Recém-Nascidos , Morte Celular/genética , Divisão Celular/genética , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Mutantes , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Transtornos dos Movimentos/patologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Mutação/genética , Necrose , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteínas de Ligação a RNA , Proteínas do Complexo SMN , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA