Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 175: 596-605, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580150

RESUMO

Biomaterials are frequently evaluated for pro-coagulant activity but usually in the presence of microparticles (MPs), cell-derived vesicles in blood plasma whose phospholipid surfaces allow coagulation factors to set up as functional assemblies. We tested the hypothesis that synthetic anionic surfaces can catalyze burst thrombin activation in human blood plasma in the absence of MPs. In a thromboelastography (TEG) assay with plastic sample cups and pins, recalcified human citrated platelet-poor plasma spontaneously burst-coagulated but with an unpredictable clotting time whereas plasma depleted of MPs by ultracentrifugation failed to coagulate. Coagulation of MP-depleted plasma was restored in a dose-dependent manner by glass microbeads, hydroxyapatite nanoparticles (HA NPs), and carboxylic acid-containing anionic nanocoatings of TEG cups and pins (coated by glow-discharge plasma-polymerized ethylene containing oxygen, L-PPE:O with 4.4 and 6.8 atomic % [COOH]). Glass beads lost their pro-coagulant activity in MP-depleted plasma after their surfaces were nanocoated with hydrophobic plasma-polymerized hexamethyl disiloxane (PP-HMDSO). In FXII-depleted MP-depleted plasma, glass microbeads failed to induce coagulation, however, FXIa was sufficient to induce coagulation in a dose-dependent manner, with no effect of glass beads. These data suggest that anionic surfaces of crystalline, organic, and amorphous solid synthetic materials catalyze explosive thrombin generation in MP-depleted plasma by activating the FXII-dependent intrinsic contact pathway. The data also show that microparticles are pro-coagulant surfaces whose activity has been largely overlooked in many coagulation studies to-date. These results suggest a possible mechanism by which anionic biomaterial surfaces induce bone healing by contact osteogenesis, through fibrin clot formation in the absence of platelet activation.


Assuntos
Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/química , Durapatita/farmacologia , Nanopartículas/química , Siloxanas/farmacologia , Ânions , Materiais Biocompatíveis/química , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Durapatita/química , Fator XII/metabolismo , Vidro/química , Humanos , Membranas Artificiais , Siloxanas/química , Propriedades de Superfície , Tromboelastografia , Trombina/metabolismo
2.
Biores Open Access ; 5(1): 320-329, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27872793

RESUMO

There is a clinical need for skin substitutes to replace full-thickness skin loss. Our group has developed a bilayered skin substitute produced from the patient's own fibroblasts and keratinocytes referred to as Self-Assembled Skin Substitute (SASS). After cell isolation and expansion, the current time required to produce SASS is 45 days. We aimed to optimize the manufacturing process to standardize the production of SASS and to reduce production time. The new approach consisted in seeding keratinocytes on a fibroblast-derived tissue sheet before its detachment from the culture plate. Four days following keratinocyte seeding, the resulting tissue was stacked on two fibroblast-derived tissue sheets and cultured at the air-liquid interface for 10 days. The resulting total production time was 31 days. An alternative method adapted to more contractile fibroblasts was also developed. It consisted in adding a peripheral frame before seeding fibroblasts in the culture plate. SASSs produced by both new methods shared similar histology, contractile behavior in vitro and in vivo evolution after grafting onto mice when compared with SASSs produced by the 45-day standard method. In conclusion, the new approach for the production of high-quality human skin substitutes should allow an earlier autologous grafting for the treatment of severely burned patients.

3.
Tissue Eng Part A ; 19(7-8): 1023-38, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23173810

RESUMO

To adequately and permanently restore organ function after grafting, human tissue-engineered skin substitutes (TESs) must ultimately contain and preserve functional epithelial stem cells (SCs). It is therefore essential that a maximum of SCs be preserved during each in vitro step leading to the production of TESs such as the culture process and the elaboration of a skin cell bank by cryopreservation. To investigate the presence and functionality of epithelial SCs within the human TESs made by the self-assembly approach, slow-cycling cells were identified using 5'-bromo-2'-deoxyuridine (BrdU) in the three-dimensional construct. A subset of basal epithelial cells retained the BrdU label and was positive for the SC-associated marker keratin 19 within TESs after a chase of 21 days in culture post-BrdU labeling. Moreover, keratinocytes harvested from TESs gave rise to SC-like colonies in secondary monolayer subcultures, indicating that SCs were preserved within TESs. To evaluate the effect of cryopreservation with dimethyl sulfoxide and storage in liquid nitrogen on SCs, human epithelial cells were extracted from skin samples, amplified in culture, and used to produce TESs, before cryopreservation as well as after thawing. We found that the proportion and the growth potential of epithelial SCs in monolayer culture and in TESs remained constant before and after cryopreservation. Further, the functionality of these substitutes was demonstrated by successfully grafting human TESs on athymic mice for 6 months. We conclude that human epithelial skin SCs are adequately preserved upon human tissue reconstruction. Thus, these TESs produced by the self-assembly approach are suitable for clinical applications.


Assuntos
Células Epiteliais/citologia , Pele Artificial , Células-Tronco/citologia , Engenharia Tecidual/métodos , Adolescente , Adulto , Idoso , Animais , Bromodesoxiuridina/metabolismo , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Criopreservação , Citometria de Fluxo , Humanos , Queratina-19/metabolismo , Queratinócitos/citologia , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA