Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Sci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896010

RESUMO

Mitochondria, which act as sensors of metabolic homeostasis and metabolite signaling, form a dynamic intracellular network of continuously changing shape, size, and localization to respond to localized cellular energy demands. Mitochondrial dynamics and function depend on interactions with the F-actin cytoskeleton that are poorly understood. Here, we show that SET domain protein 3 (SETD3), a recently described actin histidine methyltransferase, directly methylates actin Histidine-73 and enhances F-actin polymerization on mitochondria. SETD3 is a mechano-sensitive enzyme which is localized on the outer mitochondrial membrane and promotes actin polymerization around mitochondrias. SETD3 loss of function leads to diminished F-actin around mitochondria and a decrease in mitochondrial branch length, branch number, and mitochondrial movement. Our functional analysis revealed that SETD3 is required for oxidative phosphorylation and mitochondrial complex I assembly, and function. Our data further indicate that SETD3 regulates F-actin formation around mitochondria and is essential for maintaining mitochondrial morphology, movement, and function. Finally, we discovered that SETD3 levels are regulated by ECM stiffness and regulate mitochondrial shape in response to changes in ECM stiffness. These findings provide new insight into the mechanism for F-actin polymerization around mitochondria.

2.
Nucleic Acids Res ; 50(4): 2270-2286, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35137168

RESUMO

Human genetic studies identified a strong association between loss of function mutations in RBFOX2 and hypoplastic left heart syndrome (HLHS). There are currently no Rbfox2 mouse models that recapitulate HLHS. Therefore, it is still unknown how RBFOX2 as an RNA binding protein contributes to heart development. To address this, we conditionally deleted Rbfox2 in embryonic mouse hearts and found profound defects in cardiac chamber and yolk sac vasculature formation. Importantly, our Rbfox2 conditional knockout mouse model recapitulated several molecular and phenotypic features of HLHS. To determine the molecular drivers of these cardiac defects, we performed RNA-sequencing in Rbfox2 mutant hearts and identified dysregulated alternative splicing (AS) networks that affect cell adhesion to extracellular matrix (ECM) mediated by Rho GTPases. We identified two Rho GTPase cycling genes as targets of RBFOX2. Modulating AS of these two genes using antisense oligos led to cell cycle and cell-ECM adhesion defects. Consistently, Rbfox2 mutant hearts displayed cell cycle defects and inability to undergo endocardial-mesenchymal transition, processes dependent on cell-ECM adhesion and that are seen in HLHS. Overall, our work not only revealed that loss of Rbfox2 leads to heart development defects resembling HLHS, but also identified RBFOX2-regulated AS networks that influence cell-ECM communication vital for heart development.


Assuntos
Processamento Alternativo , Coração/embriologia , Fatores de Processamento de RNA/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Organogênese , RNA/metabolismo , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Genes Dev ; 33(21-22): 1491-1505, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558567

RESUMO

Cardiac fibroblasts (CFs) respond to injury by transitioning through multiple cell states, including resting CFs, activated CFs, and myofibroblasts. We report here that Hippo signaling cell-autonomously regulates CF fate transitions and proliferation, and non-cell-autonomously regulates both myeloid and CF activation in the heart. Conditional deletion of Hippo pathway kinases, Lats1 and Lats2, in uninjured CFs initiated a self-perpetuating fibrotic response in the adult heart that was exacerbated by myocardial infarction (MI). Single cell transcriptomics showed that uninjured Lats1/2 mutant CFs spontaneously transitioned to a myofibroblast cell state. Through gene regulatory network reconstruction, we found that Hippo-deficient myofibroblasts deployed a network of transcriptional regulators of endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) consistent with elevated secretory activity. We observed an expansion of myeloid cell heterogeneity in uninjured Lats1/2 CKO hearts with similarity to cells recovered from control hearts post-MI. Integrated genome-wide analysis of Yap chromatin occupancy revealed that Yap directly activates myofibroblast cell identity genes, the proto-oncogene Myc, and an array of genes encoding pro-inflammatory factors through enhancer-promoter looping. Our data indicate that Lats1/2 maintain the resting CF cell state through restricting the Yap-induced injury response.


Assuntos
Fibroblastos/citologia , Fibrose/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patologia , Fibrose/fisiopatologia , Deleção de Genes , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Proteínas de Sinalização YAP
4.
Curr Opin Cell Biol ; 61: 79-85, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408771

RESUMO

Ischemic heart disease is one of the leading causes of mortality. Myocardial infarction causes loss of cardiomyocytes in the injury area accompanied by formation of a fibrotic scar. This initiates a cascade of events including further loss of myocyte, increased fibrosis, and pathological cardiac hypertrophy, eventually leading to the heart failure. Cardiomyocytes in mammals have limited regenerative potential due to post mitotic nature of cardiomyocytes. Recently, multiple studies have provided substantial insights in to the molecular pathways governing this block in adult cardiomyocyte proliferation, and successfully employed that understanding to achieve cardiac regeneration. These strategies include directly reprograming the cardiomyocytes or manipulating the cardiac interstitium to repair the injured heart. In this review, we discuss the recent advances made in the field in the past two years.


Assuntos
Coração/fisiologia , Regeneração/fisiologia , Animais , Diferenciação Celular , Endoderma/embriologia , Humanos , Organogênese , Via de Sinalização Wnt
5.
Sci Rep ; 6: 30896, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27485310

RESUMO

Hypoplastic left heart syndrome (HLHS) is a fatal congenital heart disease in which the left side of the heart is underdeveloped, impairing the systemic circulation. Underdeveloped left ventricle exerts biomechanical stress on the right ventricle that can progress into heart failure. Genome-wide transcriptome changes have been identified at early stages in the right ventricle (RV) of infants with HLHS, although the molecular mechanisms remain unknown. Here, we demonstrate that the RNA binding protein Rbfox2, which is mutated in HLHS patients, is a contributor to transcriptome changes in HLHS patient RVs. Our results indicate that majority of transcripts differentially expressed in HLHS patient hearts have validated Rbfox2 binding sites. We show that Rbfox2 regulates mRNA levels of targets with 3'UTR binding sites contributing to aberrant gene expression in HLHS patients. Strikingly, the Rbfox2 nonsense mutation identified in HLHS patients truncates the protein, impairs its subcellular distribution and adversely affects its function in RNA metabolism. Overall, our findings uncover a novel role for Rbfox2 in controlling transcriptome in HLHS.


Assuntos
Processamento Alternativo , Códon sem Sentido , Síndrome do Coração Esquerdo Hipoplásico/patologia , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Humanos , Síndrome do Coração Esquerdo Hipoplásico/genética , Síndrome do Coração Esquerdo Hipoplásico/metabolismo , Recém-Nascido , RNA Mensageiro/genética
6.
Cell Rep ; 15(10): 2200-2213, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239029

RESUMO

Alternative splicing (AS) defects that adversely affect gene expression and function have been identified in diabetic hearts; however, the mechanisms responsible are largely unknown. Here, we show that the RNA-binding protein RBFOX2 contributes to transcriptome changes under diabetic conditions. RBFOX2 controls AS of genes with important roles in heart function relevant to diabetic cardiomyopathy. RBFOX2 protein levels are elevated in diabetic hearts despite low RBFOX2 AS activity. A dominant-negative (DN) isoform of RBFOX2 that blocks RBFOX2-mediated AS is generated in diabetic hearts. DN RBFOX2 interacts with wild-type (WT) RBFOX2, and ectopic expression of DN RBFOX2 inhibits AS of RBFOX2 targets. Notably, DN RBFOX2 expression is specific to diabetes and occurs at early stages before cardiomyopathy symptoms appear. Importantly, DN RBFOX2 expression impairs intracellular calcium release in cardiomyocytes. Our results demonstrate that RBFOX2 dysregulation by DN RBFOX2 is an early pathogenic event in diabetic hearts.


Assuntos
Cardiomiopatias Diabéticas/genética , Regulação da Expressão Gênica , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Processamento Alternativo , Animais , Sítios de Ligação , Sinalização do Cálcio , Diferenciação Celular , Linhagem Celular , Citoesqueleto/metabolismo , Cardiomiopatias Diabéticas/patologia , Humanos , Hipertensão/genética , Hipertensão/patologia , Espaço Intracelular/metabolismo , Camundongos Endogâmicos NOD , Miocárdio/metabolismo , Miocárdio/patologia , Obesidade/genética , Obesidade/patologia , Ligação Proteica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/metabolismo , Fatores de Processamento de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas Repressoras/genética , Regulação para Cima/genética
7.
J Biol Chem ; 288(49): 35372-86, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24151077

RESUMO

Diabetic cardiomyopathy is one of the complications of diabetes that eventually leads to heart failure and death. Aberrant activation of PKC signaling contributes to diabetic cardiomyopathy by mechanisms that are poorly understood. Previous reports indicate that PKC is implicated in alternative splicing regulation. Therefore, we wanted to test whether PKC activation in diabetic hearts induces alternative splicing abnormalities. Here, using RNA sequencing we identified a set of 22 alternative splicing events that undergo a developmental switch in splicing, and we confirmed that splicing reverts to an embryonic pattern in adult diabetic hearts. This network of genes has important functions in RNA metabolism and in developmental processes such as differentiation. Importantly, PKC isozymes α/ß control alternative splicing of these genes via phosphorylation and up-regulation of the RNA-binding proteins CELF1 and Rbfox2. Using a mutant of CELF1, we show that phosphorylation of CELF1 by PKC is necessary for regulation of splicing events altered in diabetes. In summary, our studies indicate that activation of PKCα/ß in diabetic hearts contributes to the genome-wide splicing changes through phosphorylation and up-regulation of CELF1/Rbfox2 proteins. These findings provide a basis for PKC-mediated cardiac pathogenesis under diabetic conditions.


Assuntos
Processamento Alternativo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Miocárdio/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cardiomiopatias Diabéticas/patologia , Feminino , Feto/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas de Ligação a RNA/metabolismo , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA