Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38187577

RESUMO

Animals process a constant stream of sensory input, and to survive they must detect and respond to dangerous stimuli while ignoring innocuous or irrelevant ones. Behavioral responses are elicited when certain properties of a stimulus such as its intensity or size reach a critical value, and such behavioral thresholds can be a simple and effective mechanism to filter sensory information. For example, the acoustic startle response is a conserved and stereotyped defensive behavior induced by sudden loud sounds, but dysregulation of the threshold to initiate this behavior can result in startle hypersensitivity that is associated with sensory processing disorders including schizophrenia and autism. Through a previous forward genetic screen for regulators of the startle threshold a nonsense mutation in Cytoplasmic Fragile X Messenger Ribonucleoprotein (FMRP)-interacting protein 2 (cyfip2) was found that causes startle hypersensitivity in zebrafish larvae, but the molecular mechanisms by which Cyfip2 establishes the acoustic startle threshold are unknown. Here we used conditional transgenic rescue and CRISPR/Cas9 to determine that Cyfip2 acts though both Rac1 and FMRP pathways, but not the closely related FXR1 or FXR2, to establish the acoustic startle threshold during early neurodevelopment. To identify proteins and pathways that may be downstream effectors of Rac1 and FMRP, we performed a candidate-based drug screen that indicated that Cyfip2 can also act acutely to maintain the startle threshold branched actin polymerization and N-methyl D-aspartate receptors (NMDARs). To complement this approach, we used unbiased discovery proteomics to determine that loss of Cyfip2 alters cytoskeletal and extracellular matrix components while also disrupting oxidative phosphorylation and GABA receptor signaling. Finally, we functionally validated our proteomics findings by showing that activating GABAB receptors, which like NMDARs are also FMRP targets, restores normal startle sensitivity in cyfip2 mutants. Together, these data reveal multiple mechanisms by which Cyfip2 regulates excitatory/inhibitory balance in the startle circuit to control the processing of acoustic information.

2.
Genes Dev ; 35(11-12): 899-913, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34016691

RESUMO

In mammals, a set of core clock genes form transcription-translation feedback loops to generate circadian oscillations. We and others recently identified a novel transcript at the Period2 (Per2) locus that is transcribed from the antisense strand of Per2 This transcript, Per2AS, is expressed rhythmically and antiphasic to Per2 mRNA, leading to our hypothesis that Per2AS and Per2 mutually inhibit each other's expression and form a double negative feedback loop. By perturbing the expression of Per2AS, we found that Per2AS transcription, but not transcript, represses Per2 However, Per2 does not repress Per2AS, as Per2 knockdown led to a decrease in the Per2AS level, indicating that Per2AS forms a single negative feedback loop with Per2 and maintains the level of Per2 within the oscillatory range. Per2AS also regulates the amplitude of the circadian clock, and this function cannot be solely explained through its interaction with Per2, as Per2 knockdown does not recapitulate the phenotypes of Per2AS perturbation. Overall, our data indicate that Per2AS is an important regulatory molecule in the mammalian circadian clock machinery. Our work also supports the idea that antisense transcripts of core clock genes constitute a common feature of circadian clocks, as they are found in other organisms.


Assuntos
Relógios Circadianos/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo , Animais , Retroalimentação Fisiológica , Técnicas de Silenciamento de Genes , Camundongos , Proteínas Circadianas Period/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA