RESUMO
Bladder cancer (BC) is the fourth most common cancer in men, with a poor patient prognosis for advanced disease. The poor survival of patients with muscle-invasive bladder cancer (MIBC) and metastatic status emphasizes the urgent need to develop new therapies. Lacking in the field of BC is the availability of relevant advanced BC mouse models, especially metastatic ones, that accurately recapitulate the complexities of human pathology to test and study new therapeutic strategies. Addressing this need, we developed a traceable mouse model of BC that expresses tumor-associated antigens within the context of advanced muscle-invasive BC. This novel system was achieved through the deletion of the tp53 and pten genes, alongside the incorporation of the fusion construct of Firefly luciferase (Luc) and the SIYRYYGL (SIY) T-cell antigen. We validate that the presence of the transgene did not impact on the development of the tumors while allowing us to measure tumor progression by bioluminescence. We show that the transgene did not influence the composition of the immune tumor microenvironment. More importantly, we report that this model was unresponsive to anti-PD-1 treatment, as in the majority of patients with BC. We also develop a new model based on the orthotopic injection of BC clonal cell lines derived from our first model. We demonstrate that this new model invades the muscle layer and has a metastasis development rate of 83%. The advantage of this model is that we can visualize tumor growth and metastasis development in vivo. These mouse models' characteristics, displaying many similarities with the human pathology, provide a valuable tool for tracking tumor progression, metastasis spread in vivo, and treatment resistance, as well as exploring fundamental and translational aspects of BC biology. This work contributes to the improvement in the landscape of mouse models of advanced BC for testing new therapeutic strategies.
RESUMO
Blood-based biomarkers represent ideal candidates for the development of non-invasive immuno-oncology-based assays. However, to date, no blood biomarker has been validated to predict clinical responses to immunotherapy. In this study, we used next-generation sequencing (RNAseq) on bulk RNA extracted from whole blood and tumor samples in a pre-clinical MIBC mouse model. We aimed to identify biomarkers associated with immunotherapy response and assess the potential application of simple non-invasive blood biomarkers as a therapeutic decision-making assay compared to tissue-based biomarkers. We established that circulating immune cells and the tumor microenvironment (TME) display highly organ-specific transcriptional responses to ICIs. Interestingly, in both, a common lymphocytic activation signature can be identified associated with the efficient response to immunotherapy, including a blood-specific CD8+ T cell activation/proliferation signature which predicts the immunotherapy response.
RESUMO
Tumor-associated macrophages (TAMs) are one of the most abundant infiltrating immune cells of solid tumors. Despite their possible dual role, i.e., pro- or anti-tumoral, there is considerable evidence showing that the accumulation of TAMs promotes tumor progression rather than slowing it. Several strategies are being developed and clinically tested to target these cells. Bladder cancer (BCa) is one of the most common cancers, and despite heavy treatments, including immune checkpoint inhibitors (ICIs), the overall patient survival for advanced BCa is still poor. TAMs are present in bladder tumors and play a significant role in BCa development. However, few investigations have analyzed the effect of targeting TAMs in BCa. In this review, we focus on the importance of TAMs in a cancerous bladder, their association with patient outcome and treatment efficiency as well as on how current BCa treatments impact these cells. We also report different strategies used in other cancer types to develop new immunotherapeutic strategies with the aim of improving BCa management through TAMs targeting.