RESUMO
Genome stability is significantly influenced by the precise coordination of chromatin complexes that facilitate the loading and eviction of histones from chromatin during replication, transcription, and DNA repair processes. In this study, we investigate the role of the Arabidopsis H3 histone chaperones ANTI-SILENCING FUNCTION 1 (ASF1) and HISTONE REGULATOR A (HIRA) in the maintenance of telomeres and 45S rDNA loci, genomic sites that are particularly susceptible to changes in the chromatin structure. We find that both ASF1 and HIRA are essential for telomere length regulation, as telomeres are significantly shorter in asf1a1b and hira mutants. However, these shorter telomeres remain localized around the nucleolus and exhibit a comparable relative H3 occupancy to the wild type. In addition to regulating telomere length, ASF1 and HIRA contribute to silencing 45S rRNA genes and affect their copy number. Besides, ASF1 supports global heterochromatin maintenance. Our findings also indicate that ASF1 transiently binds to the TELOMERE REPEAT BINDING 1 protein and the N terminus of telomerase in vivo, suggesting a physical link between the ASF1 histone chaperone and the telomere maintenance machinery.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Ribossômico , Chaperonas de Histonas , Telômero , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Telômero/metabolismo , Telômero/genética , Arabidopsis/genética , Arabidopsis/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Homeostase do Telômero , Histonas/metabolismo , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Telomerase/genética , Telomerase/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Fatores de Processamento de RNARESUMO
Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.
Assuntos
Núcleo Celular , Cromatina , Humanos , Fluxo de Trabalho , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Proteínas de Fluorescência VerdeRESUMO
The Open Microscopy Environment Remote Objects (OMERO) is an open-source image manager used by many biologists to store, organize, view, and share microscopy images, while the open-source software ImageJ/Fiji is a very popular program used to analyse them. However, there is a lack of an easy-to-use generic tool to run a workflow on a batch of images without having to download them to local computers, and to automatically organize the results in OMERO. To offer this functionality, we have built (i) a library in Java: "Simple OMERO Client", to communicate with an OMERO database from Java software, (ii) an ImageJ/Fiji plugin to run a macro-program on a batch of images from OMERO and (iii) a new set of Macro Functions, "OMERO Macro extensions", dedicated to interact with OMERO in macro-programming. The latter is intended for developers, with additional possibilities using tag criteria, while the "Batch OMERO plugin" is more geared towards non-IT scientists and has a very easy to use interface. Each tool is illustrated with a use case.
Assuntos
Processamento de Imagem Assistida por Computador , Software , Bases de Dados Factuais , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia , Fluxo de TrabalhoRESUMO
BACKGROUND: The three-dimensional nuclear arrangement of chromatin impacts many cellular processes operating at the DNA level in animal and plant systems. Chromatin organization is a dynamic process that can be affected by biotic and abiotic stresses. Three-dimensional imaging technology allows to follow these dynamic changes, but only a few semi-automated processing methods currently exist for quantitative analysis of the 3D chromatin organization. RESULTS: We present an automated method, Nuclear Object DetectionJ (NODeJ), developed as an imageJ plugin. This program segments and analyzes high intensity domains in nuclei from 3D images. NODeJ performs a Laplacian convolution on the mask of a nucleus to enhance the contrast of intra-nuclear objects and allow their detection. We reanalyzed public datasets and determined that NODeJ is able to accurately identify heterochromatin domains from a diverse set of Arabidopsis thaliana nuclei stained with DAPI or Hoechst. NODeJ is also able to detect signals in nuclei from DNA FISH experiments, allowing for the analysis of specific targets of interest. CONCLUSION AND AVAILABILITY: NODeJ allows for efficient automated analysis of subnuclear structures by avoiding the semi-automated steps, resulting in reduced processing time and analytical bias. NODeJ is written in Java and provided as an ImageJ plugin with a command line option to perform more high-throughput analyses. NODeJ can be downloaded from https://gitlab.com/axpoulet/image2danalysis/-/releases with source code, documentation and further information avaliable at https://gitlab.com/axpoulet/image2danalysis . The images used in this study are publicly available at https://www.brookes.ac.uk/indepth/images/ and https://doi.org/10.15454/1HSOIE .
Assuntos
Arabidopsis , Processamento de Imagem Assistida por Computador , Animais , Arabidopsis/genética , Núcleo Celular/genética , Cromatina , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , SoftwareRESUMO
For the past century, the nucleus has been the focus of extensive investigations in cell biology. However, many questions remain about how its shape and size are regulated during development, in different tissues, or during disease and aging. To track these changes, microscopy has long been the tool of choice. Image analysis has revolutionized this field of research by providing computational tools that can be used to translate qualitative images into quantitative parameters. Many tools have been designed to delimit objects in 2D and, eventually, in 3D in order to define their shapes, their number or their position in nuclear space. Today, the field is driven by deep-learning methods, most of which take advantage of convolutional neural networks. These techniques are remarkably adapted to biomedical images when trained using large datasets and powerful computer graphics cards. To promote these innovative and promising methods to cell biologists, this Review summarizes the main concepts and terminologies of deep learning. Special emphasis is placed on the availability of these methods. We highlight why the quality and characteristics of training image datasets are important and where to find them, as well as how to create, store and share image datasets. Finally, we describe deep-learning methods well-suited for 3D analysis of nuclei and classify them according to their level of usability for biologists. Out of more than 150 published methods, we identify fewer than 12 that biologists can use, and we explain why this is the case. Based on this experience, we propose best practices to share deep-learning methods with biologists.
Assuntos
Aprendizado Profundo , Núcleo Celular , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Microscopia/métodos , Redes Neurais de ComputaçãoRESUMO
Together with local chromatin structure, gene accessibility, and the presence of transcription factors, gene positioning is implicated in gene expression regulation. Although the basic mechanisms are expected to be conserved in eukaryotes, less is known about the role of gene positioning in plant cells, mainly due to the lack of a highly resolutive approach. In this study, we adapted the use of the ANCHOR system to perform real-time single locus detection in planta. ANCHOR is a DNA-labeling tool derived from the chromosome partitioning system found in many bacterial species. We demonstrated its suitability to monitor a single locus in planta and used this approach to track chromatin mobility during cell differentiation in Arabidopsis thaliana root epidermal cells. Finally, we discussed the potential of this approach to investigate the role of gene positioning during transcription and DNA repair in plants.
RESUMO
Histone chaperones regulate the flow and dynamics of histone variants and ensure their assembly into nucleosomal structures, thereby contributing to the repertoire of histone variants in specialized cells or tissues. To date, not much is known on the distribution of histone variants and their modifications in the dry seed embryo. Here, we bring evidence that genes encoding the replacement histone variant H3.3 are expressed in Arabidopsis dry seeds and that embryo chromatin is characterized by a low H3.1/H3.3 ratio. Loss of HISTONE REGULATOR A (HIRA), a histone chaperone responsible for H3.3 deposition, reduces cellular H3 levels and increases chromatin accessibility in dry seeds. These molecular differences are accompanied by increased seed dormancy in hira-1 mutant seeds. The loss of HIRA negatively affects seed germination even in the absence of HISTONE MONOUBIQUITINATION 1 or TRANSCRIPTION ELONGATION FACTOR II S, known to be required for seed dormancy. Finally, hira-1 mutant seeds show lower germination efficiency when aged under controlled deterioration conditions or when facing unfavorable environmental conditions such as high salinity. Altogether, our results reveal a dependency of dry seed chromatin organization on the replication-independent histone deposition pathway and show that HIRA contributes to modulating seed dormancy and vigor.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Germinação , Chaperonas de Histonas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Cromatina/metabolismo , Epistasia Genética/efeitos dos fármacos , Temperatura Alta , Umidade , Vigor Híbrido , Mutação/genética , Dormência de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Estresse Salino , Fatores de Elongação da Transcrição/metabolismoRESUMO
NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at https://www.brookes.ac.uk/indepth/images/ . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence in situ hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.
Assuntos
Nucléolo Celular , Bases de Dados Factuais , Imageamento Tridimensional , SoftwareRESUMO
The eukaryotic cell nucleus is a central organelle whose architecture determines genome function at multiple levels. Deciphering nuclear organizing principles influencing cellular responses and identity is a timely challenge. Despite many similarities between plant and animal nuclei, plant nuclei present intriguing specificities. Complementary to molecular and biochemical approaches, 3D microscopy is indispensable for resolving nuclear architecture. However, novel solutions are required for capturing cell-specific, sub-nuclear and dynamic processes. We provide a pointer for utilising high-to-super-resolution microscopy and image processing to probe plant nuclear architecture in 3D at the best possible spatial and temporal resolution and at quantitative and cell-specific levels. High-end imaging and image-processing solutions allow the community now to transcend conventional practices and benefit from continuously improving approaches. These promise to deliver a comprehensive, 3D view of plant nuclear architecture and to capture spatial dynamics of the nuclear compartment in relation to cellular states and responses. Abbreviations: 3D and 4D: Three and Four dimensional; AI: Artificial Intelligence; ant: antipodal nuclei (ant); CLSM: Confocal Laser Scanning Microscopy; CTs: Chromosome Territories; DL: Deep Learning; DLIm: Dynamic Live Imaging; ecn: egg nucleus; FACS: Fluorescence-Activated Cell Sorting; FISH: Fluorescent In Situ Hybridization; FP: Fluorescent Proteins (GFP, RFP, CFP, YFP, mCherry); FRAP: Fluorescence Recovery After Photobleaching; GPU: Graphics Processing Unit; KEEs: KNOT Engaged Elements; INTACT: Isolation of Nuclei TAgged in specific Cell Types; LADs: Lamin-Associated Domains; ML: Machine Learning; NA: Numerical Aperture; NADs: Nucleolar Associated Domains; PALM: Photo-Activated Localization Microscopy; Pixel: Picture element; pn: polar nuclei; PSF: Point Spread Function; RHF: Relative Heterochromatin Fraction; SIM: Structured Illumination Microscopy; SLIm: Static Live Imaging; SMC: Spore Mother Cell; SNR: Signal to Noise Ratio; SRM: Super-Resolution Microscopy; STED: STimulated Emission Depletion; STORM: STochastic Optical Reconstruction Microscopy; syn: synergid nuclei; TADs: Topologically Associating Domains; Voxel: Volumetric pixel.
Assuntos
Núcleo Celular , Imageamento Tridimensional , Células Vegetais , Animais , Inteligência Artificial , Núcleo Celular/química , Humanos , Hibridização in Situ Fluorescente , Microscopia Confocal , Microscopia de FluorescênciaRESUMO
Developmental phase transitions are often characterized by changes in the chromatin landscape and heterochromatin reorganization. In Arabidopsis, clustering of repetitive heterochromatic loci into so-called chromocenters is an important determinant of chromosome organization in nuclear space. Here, we investigated the molecular mechanisms involved in chromocenter formation during the switch from a heterotrophic to a photosynthetically competent state during early seedling development. We characterized the spatial organization and chromatin features at centromeric and pericentromeric repeats and identified mutant contexts with impaired chromocenter formation. We find that clustering of repetitive DNA loci into chromocenters takes place in a precise temporal window and results in reinforced transcriptional repression. Although repetitive sequences are enriched in H3K9me2 and linker histone H1 before repeat clustering, chromocenter formation involves increasing enrichment in H3.1 as well as H2A.W histone variants, hallmarks of heterochromatin. These processes are severely affected in mutants impaired in replication-coupled histone assembly mediated by CHROMATIN ASSEMBLY FACTOR 1 (CAF-1). We further reveal that histone deposition by CAF-1 is required for efficient H3K9me2 enrichment at repetitive sequences during chromocenter formation. Taken together, we show that chromocenter assembly during post-germination development requires dynamic changes in nucleosome composition and histone post-translational modifications orchestrated by the replication-coupled H3.1 deposition machinery.
Assuntos
Arabidopsis/crescimento & desenvolvimento , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Plântula/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , Heterocromatina/genética , Histonas/genética , Lisina/metabolismo , Mutação , Plantas Geneticamente Modificadas , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico , Plântula/genética , Plântula/metabolismoRESUMO
Image analysis is a classical way to study nuclear organization. While nuclear organization used to be investigated by colorimetric or fluorescent labeling of DNA or specific nuclear compartments, new methods in microscopy imaging now enable qualitative and quantitative analyses of chromatin pattern, and nuclear size and shape. Several procedures have been developed to prepare samples in order to collect 3D images for the analysis of spatial chromatin organization, but only few preserve the positional information of the cell within its tissue context. Here, we describe a whole mount tissue preparation procedure coupled to DNA staining using the PicoGreen® intercalating agent suitable for image analysis of the nucleus in living and fixed tissues. 3D Image analysis is then performed using NucleusJ, an open source ImageJ plugin, which allows for quantifying variations in nuclear morphology such as nuclear volume, sphericity, elongation, and flatness as well as in heterochromatin content and position in respect to the nuclear periphery.
Assuntos
Arabidopsis/genética , Núcleo Celular/ultraestrutura , Heterocromatina/ultraestrutura , Arabidopsis/ultraestrutura , Núcleo Celular/genética , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodosRESUMO
The linker of nucleoskeleton and cytoskeleton (LINC) complex is an evolutionarily well-conserved protein bridge connecting the cytoplasmic and nuclear compartments across the nuclear membrane. While recent data support its function in nuclear morphology and meiosis, its involvement in chromatin organisation has not been studied in plants. Here, 3D imaging methods have been used to investigate nuclear morphology and chromatin organisation in interphase nuclei of the model plant Arabidopsis thaliana in which heterochromatin clusters in conspicuous chromatin domains called chromocentres. Chromocentres form a repressive chromatin environment contributing to transcriptional silencing of repeated sequences, a general mechanism needed for genome stability. Quantitative measurements of the 3D position of chromocentres indicate their close proximity to the nuclear periphery but that their position varies with nuclear volume and can be altered in specific mutants affecting the LINC complex. Finally, we propose that the plant LINC complex contributes to proper heterochromatin organisation and positioning at the nuclear periphery, since its alteration is associated with the release of transcriptional silencing as well as decompaction of heterochromatic sequences.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Inativação Gênica , Heterocromatina/metabolismo , Complexos Multiproteicos/metabolismo , Transcrição Gênica , Arabidopsis/citologia , Forma do Núcleo Celular , Imageamento Tridimensional , Mutação/genética , Fenótipo , Raízes de Plantas/citologia , Estômatos de Plantas/citologia , Sequências Repetitivas de Ácido Nucleico/genéticaRESUMO
In non-plant systems, chromatin association with the nuclear periphery affects gene expression, where interactions with nuclear envelope proteins can repress and interactions with nucleoporins can enhance transcription. In plants, both hetero- and euchromatin can localize at the nuclear periphery, but the effect of proximity to the nuclear periphery on gene expression remains largely unknown. This study explores the putative function of Seh1 and Nup50a nucleoporins on gene expression by using the Lac Operator / Lac Repressor (LacI-LacO) system adapted to Arabidopsis thaliana. We used LacO fused to the luciferase reporter gene (LacO:Luc) to investigate whether binding of the LacO:Luc transgene to nucleoporin:LacI protein fusions alters luciferase expression. Two separate nucleoporin-LacI-YFP fusions were introduced into single insert, homozygous LacO:Luc Arabidopsis plants. Homozygous plants carrying LacO:Luc and a single insert of either Seh1-LacI-YFP or Nup50a-LacI-YFP were tested for luciferase activity and compared to plants containing LacO:Luc only. Seh1-LacI-YFP increased, while Nup50a-LacI-YFP decreased luciferase activity. Seh1-LacI-YFP accumulated at the nuclear periphery as expected, while Nup50a-LacI-YFP was nucleoplasmic and was not selected for further study. Protein and RNA levels of luciferase were quantified by western blotting and RT-qPCR, respectively. Increased luciferase activity in LacO:Luc+Seh1-LacI-YFP plants was correlated with increased luciferase protein and RNA levels. This change of luciferase expression was abolished by disruption of LacI-LacO binding by treating with IPTG in young seedlings, rosette leaves and inflorescences. This study suggests that association with the nuclear periphery is involved in the regulation of gene expression in plants.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Repressores Lac/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
In Drosophila, the piRNA cluster, flamenco, produces most of the piRNAs (PIWI-interacting RNAs) that silence transposable elements in the somatic follicle cells during oogenesis. These piRNAs are thought to be processed from a long single-stranded precursor transcript. Here, we demonstrate that flamenco transcription is initiated from an RNA polymerase II promoter containing an initiator motif (Inr) and downstream promoter element (DPE) and requires the transcription factor, Cubitus interruptus. We show that the flamenco precursor transcript undergoes differential alternative splicing to generate diverse RNA precursors that are processed to piRNAs. Our data reveal dynamic processing steps giving rise to piRNA cluster precursors.
Assuntos
Drosophila melanogaster/genética , RNA Interferente Pequeno/genética , Transcrição Gênica , Processamento Alternativo , Animais , Caderinas/genética , Células Cultivadas , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Feminino , Família Multigênica , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , RNA Polimerase II/fisiologia , Splicing de RNA , Fatores de Transcrição/fisiologiaRESUMO
BACKGROUND: In the Drosophila germ line, repeat-associated small interfering RNAs (rasiRNAs) ensure genomic stability by silencing endogenous transposable elements. This RNA silencing involves small RNAs of 26-30 nucleotides that are mainly produced from the antisense strand and function through the Piwi protein. Piwi belongs to the subclass of the Argonaute family of RNA interference effector proteins, which are expressed in the germline and in surrounding somatic tissues of the reproductive apparatus. In addition to this germ-line expression, Piwi has also been implicated in diverse functions in somatic cells. PRINCIPAL FINDINGS: Here, we show that two LTR retrotransposons from Drosophila melanogaster, ZAM and Idefix, are silenced by an RNA silencing pathway that has characteristics of the rasiRNA pathway and that specifically recognizes and destroys the sense-strand RNAs of the retrotransposons. This silencing depends on Piwi in the follicle cells surrounding the oocyte. Interestingly, this silencing is active in all the somatic tissues examined from embryos to adult flies. In these somatic cells, while the silencing still involves the strict recognition of sense-strand transcripts, it displays the marked difference of being independent of the Piwi protein. Finally, we present evidence that in all the tissues examined, the repression is controlled by the heterochromatic COM locus. CONCLUSION: Our data shed further light on the silencing mechanism that acts to target Drosophila LTR retrotransposons in somatic cells throughout fly development. They demonstrate that different RNA silencing pathways are involved in ovarian versus other somatic tissues, since Piwi is necessary for silencing in the former tissues but is dispensable in the latter. They further demonstrate that these pathways are controlled by the heterochromatic COM locus which ensures the overall protection of Drosophila against the detrimental effects of random retrotransposon mobilization.
Assuntos
Drosophila melanogaster/genética , Inativação Gênica , Proteínas/metabolismo , RNA Interferente Pequeno/genética , Retroelementos/genética , Animais , Proteínas Argonautas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Feminino , Ovário , Complexo de Inativação Induzido por RNA , Transdução de Sinais , Cromossomo XRESUMO
ZAM and Idefix are two endogenous retroviruses whose expression is tightly controlled in Drosophila melanogaster. However, a line exists in which this control has been perturbed, resulting in a high mobilization rate for both retroviruses. This line is called the U (unstable) line as opposed to the other S (stable) lines. In the process of analyzing this control and tracing the genetic determinant involved, we found that ZAM and Idefix expression responded to two types of controls: one restricting their expression to specific somatic cells in the ovaries and the other silencing their expression in S lines but permitting it in U lines. While studying this second control in the U or S backgrounds, we found that the heterochromatic locus 20A2-3 on the X chromosome, previously implicated in the regulation of a third retroelement, gypsy, also controlled both ZAM and Idefix. We report here that genetic determinants necessary for endogenous retrovirus silencing occur at the 20A2-3 locus, which we call COM, for centre organisateur de mobilisation. We propose that if this point of control becomes mutated during the life of the fly, it may trigger processes reactivating dormant endogenous retroviruses and thus bring about sudden bursts of mobilization.