Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Rep ; 14(1): 11511, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769354

RESUMO

Four invasive Mediterranean snails, i.e., Theba pisana (Müller, 1774), Cernuella virgata (da Costa, 1778), Cochlicella acuta (Müller, 1774) and Cochlicella barbara (Linnaeus, 1758) cost $170 million yearly to the grain industry in Australia. Their impact is mainly due to their estivation behavior: snails climb on cereal and legume stalks to rest during summer, which coincides with harvest, causing grain contamination issues in crops such as wheat, barley and canola. Diverse management methods have been developed to regulate snail populations, with limited success. Our study investigates the potential for a push-pull strategy to divert invasive snails from cultivated fields. A "push" part (i.e. using a repellent stimuli) was based on the use of a chemical deterrent repelling snails from the cultivated field, and a "pull" part (i.e. using an attractive stimuli) was based on offering attractive estivation supports for snails to aggregate outside the cultivated field. First, artificial estivation supports of different colors were tested under laboratory and field conditions and showed that red supports were the most attractive for these snails. Second, different substances were tested as potential snail deterrents (garlic, coffee, coffee grounds, copper). Garlic extracts were the most powerful snail deterrent and were shown to effectively protect an estivation support and food source from snails under laboratory conditions. These results, which were highly consistent for the four species, illustrate the potential of a push-pull strategy against invasive snails in Australia. It is the first attempt to develop a push-pull strategy relying on both visual and chemical stimuli to achieve results, as well as manipulating the estivation behavior of a pest.


Assuntos
Espécies Introduzidas , Caramujos , Animais , Caramujos/fisiologia , Austrália , Estimulação Luminosa/métodos , Comportamento Animal/fisiologia
2.
Plants (Basel) ; 11(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145728

RESUMO

The exposure to volatiles from damaged plants can increase the resistance of the neighboring plants to herbivores. Studies have demonstrated that the strength of this response depends on the level of relatedness between the interacting plants. Indeed, a field study with Phaseolus lunatus found that the responses to induced volatiles were population-specific; individuals exposed to damaged conspecifics from the 'local' population exhibited greater resistance to herbivores than those exposed to damaged conspecifics from 'foreign' populations. Here, we repeated this study in the laboratory by placing undamaged plants near damaged plants from either their local or a foreign population. The former plants experienced less herbivory than the latter after a subsequent challenge by a generalist herbivore. To understand the role of the volatiles underlying this observed specificity, we explored the variability in the constitutively released volatiles and volatiles released after mechanical or herbivore damage among the three tested populations of P. lunatus. The total volatile emissions were 5× and 10× higher from the mechanically and herbivore-damaged plants, respectively, compared to the undamaged plants. The populations differed in their relative ratios of dominant constitutive compounds, but no pattern was observed that could explain the differential responses to induced volatiles among the populations. Overall, this study confirms the population-specific volatile-mediated interactions in P. lunatus.

3.
Sci Rep ; 11(1): 23698, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880284

RESUMO

Insect and gastropod herbivores are major plant consumers and their importance in the evolution of plant defensive traits is broadly recognized. However, their respective effects on plant responses have rarely been compared. Here we focused on plant volatile emissions (VOCs) following herbivory and compared the effects of herbivory by caterpillars of the generalist insect Spodoptera littoralis and by generalist slugs of the genus Arion on the VOCs emissions of 14 cultivated plant species. Results revealed that plants consistently produced higher amounts of volatiles and responded more specifically to caterpillar than to slug herbivory. Specifically, plants released on average 6.0 times more VOCs (total), 8.9 times more green leaf volatiles, 4.2 times more terpenoids, 6.0 times more aromatic hydrocarbons, and 5.7 times more other VOCs in response to 1 cm2 of insect damage than to 1 cm2 of slug damage. Interestingly, four of the plant species tested produced a distinct blend of volatiles following insect damage but not slug damage. These findings may result from different chemical elicitors or from physical differences in herbivory by the two herbivores. This study is an important step toward a more inclusive view of plant responses to different types of herbivores.


Assuntos
Gastrópodes , Herbivoria , Interações Hospedeiro-Parasita , Insetos , Fenômenos Fisiológicos Vegetais , Compostos Orgânicos Voláteis/análise , Animais
4.
Insects ; 12(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940206

RESUMO

Terrestrial snails that live in hot and dry climates have developed strategies to cope with high summer temperatures. Several species estivate during the warmest months of the years by resting on vertical supports, typically in groups. Understanding how snails choose their estivation sites and aggregate may lead to the development of new management tools in areas where these snails are invasive. Here, we investigated the preferences of four snail species for vertical supports varying in widths and heights under laboratory and field conditions, and tested whether the presence of conspecifics or snails of other species affected these preferences. The results show that the snails strongly preferred wider supports in laboratory dual-choice tests, and one species (Theba pisana) showed a consistent preference for taller supports as well. These results were confirmed in the field, where more snails were found on wider and taller supports 24 h after being placed in test quadrats. The percentage of snails found in groups on a support was strongly density-dependent. The presence of conspecifics or their mucus did not affect the choices of the snails, nor did the presence of snails of other species or their mucus. Taken together, these results could lead to the development of attractive supports that could be used to mass-capture snails in the field.

5.
Curr Biol ; 31(15): 3450-3456.e5, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34146488

RESUMO

It is increasingly evident that plants interact with their outside world through the production of volatile organic compounds,1-5 but whether the volatiles have evolved to serve in plant defense is still a topic of considerable debate.3,6-8 Unharmed leaves constitutively release small amounts of volatiles, but when the leaves are damaged by herbivorous arthropods, they emit substantially more volatiles. These herbivore-induced plant volatiles (HIPVs) attract parasitoids and predators that kill insect herbivores,9-12 and this can benefit the plants.13,14 As yet, however, there is no tangible evolutionary evidence that this tritrophic interplay contributes to the selection forces that have shaped the volatile emissions of plants.2,3,5-8,15 With this in mind, we investigated the evolutionary changes in volatile emissions in invasive common ragwort and the respective defensive roles of its constitutive and inducible volatiles. This Eurasian plant has invaded other continents, where it evolved for many generations in the absence of specialized herbivores and their natural enemies. We found that, compared to native ragworts, invasive plants release higher levels of constitutive volatiles but considerably lower levels of herbivore-induced volatiles. As a consequence, invasive ragwort is more attractive to a specialist moth but avoided by an unadapted generalist moth. Importantly, conforming to the indirect defense hypothesis, a specialist parasitoid was much more attracted to caterpillar-damaged native ragwort, which was reflected in higher parasitism rates in a field trial. The evolution of foliar volatile emissions appears to be indeed driven by their direct and indirect roles in defenses against insects.


Assuntos
Mariposas , Senécio/química , Compostos Orgânicos Voláteis , Animais , Evolução Molecular , Herbivoria , Insetos , Espécies Introduzidas , Folhas de Planta
6.
Environ Entomol ; 49(2): 364-369, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32025701

RESUMO

The viburnum leaf beetle (VLB), Pyrrhalta viburni (Paykull), is an invasive chrysomelid in North America where it infests native Viburnum shrubs in woody areas and managed landscapes. Despite its invasive and destructive nature, little is known about the chemical ecology of this beetle, and efficient chemical lures for monitoring and trapping this insect have yet to be developed. Using two of the main host plants of VLB in its native range, Viburnum opulus L. (Caprifoliaceae) and V. lantana L., we examined the olfactory preferences of adult females of VLB under laboratory conditions and measured volatile emissions of Viburnum twigs with and without VLB damage. VLB females had a clear preference for V. opulus and V. lantana twigs compared to blank odor sources. In addition, twigs with foliar damage and fresh egg masses were found to be more attractive than noninfested twigs in V. opulus when VLB infestation was recent, but not when twigs had been infested for several weeks. Chemical analyses revealed consistent treatment-specific blends of compounds, which may be used for the elaboration of attractive lures. Future research should focus on the identification of these compounds and on exploring the olfactory preferences of VLB with Viburnum species present in North America.


Assuntos
Besouros , Viburnum , Animais , Ecologia , Feminino , América do Norte , Plantas
7.
Insects ; 10(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514415

RESUMO

Two major ecological factors determine the fitness of an insect herbivore: the ability to overcome plant resistance strategies (bottom-up effects) and the ability to avoid or resist attack by natural enemies such as predators and parasitoids (top-down effects). In response to differences in selection pressure, variation may exist in host-plant adaptation and immunity against parasitism among populations of an insect herbivore. We investigated the variation in larval performance of six different Plutella xylostella populations originating from four continents when feeding on a native Dutch plant species, Brassica rapa. One of the used populations has successfully switched its host plant, and is now adapted to pea. In addition, we determined the resistance to attack by the endoparasitoid Diadegma semiclausum originating from the Netherlands (where it is also native) and measured parasitoid performance as a proxy for host resistance against parasitism. Pupal mortality, immature development times, and adult biomass of P. xylostella differed significantly across populations when feeding on the same host plant species. In addition, parasitism success differed in terms of parasitoid adult emergence and their biomass, but not their development times. Variation among natural populations of insects should be considered more when studying interactions between plants and insects up the food chain.

8.
Planta ; 250(4): 1281-1292, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31240396

RESUMO

MAIN CONCLUSION: Cyanogenic glycosides present in the seeds of wild lima bean plants are associated with seedling defense but do not affect seed germination and seedling growth. Wild lima bean plants contain cyanogenic glycosides (CNGs) that are known to defend the plant against leaf herbivores. However, seed feeders appear to be unaffected despite the high levels of CNGs in the seeds. We investigated a possible role of CNGs in seeds as nitrogen storage compounds that influence plant growth, as well as seedling resistance to herbivores. Using seeds from four different wild lima bean natural populations that are known to vary in CNG levels, we tested two non-mutually exclusive hypotheses: (1) seeds with higher levels of CNGs produce seedlings that are more resistant against generalist herbivores and, (2) seeds with higher levels of CNGs germinate faster and produce plants that exhibit better growth. Levels of CNGs in the seeds were negatively correlated with germination rates and not correlated with seedling growth. However, levels of CNGs increased significantly soon after germination and seeds with the highest CNG levels produced seedlings with higher CNG levels in cotyledons. Moreover, the growth rate of the generalist herbivore Spodoptera littoralis was lower in cotyledons with high-CNG levels. We conclude that CNGs in lima bean seeds do not play a role in seed germination and seedling growth, but are associated with seedling defense. Our results provide insight into the potential dual function of plant secondary metabolites as defense compounds and storage molecules for growth and development.


Assuntos
Glicosídeos/metabolismo , Phaseolus/química , Imunidade Vegetal , Spodoptera/fisiologia , Animais , Germinação , Herbivoria , Nitrogênio/metabolismo , Phaseolus/crescimento & desenvolvimento , Phaseolus/imunologia , Phaseolus/parasitologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Metabolismo Secundário , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/imunologia , Plântula/fisiologia , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/imunologia , Sementes/parasitologia
9.
J Invertebr Pathol ; 160: 18-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500362

RESUMO

Terrestrial gastropod molluscs are widely distributed and are well known as pests of many types of plants that are notoriously difficult to control. Many species of nematodes are able to parasitize land snails and slugs, but few of them are lethal to their host. Species and/or populations of mollusc-parasitic nematodes (MPNs) that kill their hosts are promising for biological control purposes. The recent discovery of new nematode species of the genus Phasmarhabditis in Europe and the associations between Alloionema spp. and slugs are expanding the possibilities of using MPNs as control agents. However, very little is known about the distribution and ecology of these species. Using molecular techniques based on qPCR methods for quick identification and quantification of various species of MPN isolated directly from the soil or from infected hosts can assist in providing information on their presence and persistence, as well as the composition of natural assemblages. Here, we developed new primers and probes for five species of the genus Phasmarhabditis and one species of the genus Alloionema. We employed these novel molecular techniques and implemented a published molecular set to detect MPN presence in soil samples coming from natural and agricultural areas in Switzerland. We also developed a method that allows the detection and quantification of Phasmarhabditis hermaphrodita directly from the tissues of their slug host in a laboratory experiment. The new molecular approaches were optimized to a satisfactory limit of detection of the species, with only few cross-amplifications with closely related species in late cycles (>32). Using these tools, we detected MPNs in 7.5% of sampled sites, corresponding to forest areas (P. hermaphrodita and Alloionema appendiculatum) and wheat-oriented agricultural areas (Phasmarhabditis bohemica). Moreover, we confirmed that the method can be used to detect the presence of P. hermaphrodita inside slug hosts, with more detections in the susceptible slug Deroceras larvae compared to the resistant Arion vulgaris. These primers/probe sets provide a novel and quick tool to identify MPNs from soil samples and infected slugs without having to culture and retrieve all nematode life stages, as well as a new tool to unravel the ecology of nematode-slug complexes.


Assuntos
Nematoides/isolamento & purificação , Rhabditoidea/isolamento & purificação , Caramujos/parasitologia , Animais , DNA de Helmintos/genética , DNA Ribossômico/genética , Interações Hospedeiro-Parasita , Nematoides/genética , Nematoides/parasitologia , Controle Biológico de Vetores , Reação em Cadeia da Polimerase em Tempo Real , Rhabditoidea/genética , Rhabditoidea/parasitologia , Solo/parasitologia , Suíça
10.
Sci Rep ; 8(1): 3536, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476119

RESUMO

Biotic stress can induce plastic changes in fitness-relevant plant traits. Recently, it has been shown that such changes can be transmitted to subsequent generations. However, the occurrence and extent of transmission across different types of traits is still unexplored. Here, we assessed the emergence and transmission of herbivory-induced changes in Brassica rapa and their impact on interactions with insects. We analysed changes in morphology and reproductive traits as well as in flower and leaf volatile emission during two generations with leaf herbivory by Mamestra brassicae and Pieris brassicae and two subsequent generations without herbivory. Herbivory induced changes in all trait types, increasing attractiveness of the plants to the parasitoid wasp Cotesia glomerata and decreasing visitation by the pollinator Bombus terrestris, a potential trade-off. While changes in floral and leaf volatiles disappeared in the first generation after herbivory, some changes in morphology and reproductive traits were still measurable two generations after herbivory. However, neither parasitoids nor pollinators further discriminated between groups with different past treatments. Our results suggest that transmission of herbivore-induced changes occurs preferentially in resource-limited traits connected to plant growth and reproduction. The lack of alterations in plant-insect interactions was likely due to the transient nature of volatile changes.


Assuntos
Brassica rapa/genética , Herbivoria/fisiologia , Interações Hospedeiro-Parasita , Padrões de Herança , Característica Quantitativa Herdável , Animais , Brassica rapa/anatomia & histologia , Brassica rapa/metabolismo , Brassica rapa/parasitologia , Ecossistema , Flores/anatomia & histologia , Flores/genética , Flores/metabolismo , Flores/parasitologia , Lepidópteros/fisiologia , Mariposas/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia
11.
Glob Chang Biol ; 24(2): 631-643, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28731514

RESUMO

Global climatic changes may lead to the arrival of multiple range-expanding species from different trophic levels into new habitats, either simultaneously or in quick succession, potentially causing the introduction of manifold novel interactions into native food webs. Unraveling the complex biotic interactions between native and range-expanding species is critical to understand the impact of climate change on community ecology, but experimental evidence is lacking. In a series of laboratory experiments that simulated direct and indirect species interactions, we investigated the effects of the concurrent arrival of a range-expanding insect herbivore in Europe, Spodoptera littoralis, and its associated parasitoid Microplitis rufiventris, on the native herbivore Mamestra brassicae, and its associated parasitoid Microplitis mediator, when co-occurring on a native plant, Brassica rapa. Overall, direct interactions between the herbivores were beneficial for the exotic herbivore (higher pupal weight than the native herbivore), and negative for the native herbivore (higher mortality than the exotic herbivore). At the third trophic level, both parasitoids were unable to parasitize the herbivore they did not coexist with, but the presence of the exotic parasitoid still negatively affected the native herbivore (increased mortality) and the native parasitoid (decreased parasitism rate), through failed parasitism attempts and interference effects. Our results suggest different interaction scenarios depending on whether S. littoralis and its parasitoid arrive to the native tritrophic system separately or concurrently, as the negative effects associated with the presence of the parasitoid were dependent on the presence of the exotic herbivore. These findings illustrate the complexity and interconnectedness of multitrophic changes resulting from concurrent species arrival to new environments, and the need for integrating the ecological effects of such arrivals into the general theoretical framework of global invasion patterns driven by climatic change.


Assuntos
Herbivoria/fisiologia , Himenópteros/fisiologia , Lepidópteros/parasitologia , Plantas/classificação , Distribuição Animal , Animais , Europa (Continente) , Cadeia Alimentar , Interações Hospedeiro-Parasita , Espécies Introduzidas , Larva , Parasitos , Simbiose
12.
New Phytol ; 220(3): 726-738, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-28134434

RESUMO

Herbivore-induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering native foodwebs may disrupt the infochemical network as a result of changes in HIPV profiles. Here, we analysed HIPV blends of native Brassica rapa plants infested with one of 10 herbivore species with different coexistence histories, diet breadths and feeding modes. Partial least squares (PLS) models were fitted to assess whether HIPV blends emitted by Dutch B. rapa differ between native and exotic herbivores, between specialists and generalists, and between piercing-sucking and chewing herbivores. These models were used to predict the status of two additional herbivores. We found that HIPV blends predicted the evolutionary history, diet breadth and feeding mode of the herbivore with an accuracy of 80% or higher. Based on the HIPVs, the PLS models reliably predicted that Trichoplusia ni and Spodoptera exigua are perceived as exotic, leaf-chewing generalists by Dutch B. rapa plants. These results indicate that there are consistent and predictable differences in HIPV blends depending on global herbivore characteristics, including coexistence history. Consequently, native organisms may be able to rapidly adapt to potentially disruptive effects of exotic herbivores on the infochemical network.


Assuntos
Dieta , Herbivoria/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Brassica/metabolismo , Análise Discriminante , Análise dos Mínimos Quadrados , Modelos Biológicos , Spodoptera/fisiologia
13.
Ecol Evol ; 7(16): 6304-6313, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28861234

RESUMO

In the arms race between plants, herbivores, and their natural enemies, specialized herbivores may use plant defenses for their own benefit, and variation in plant traits may affect the benefits that herbivores derive from these defenses. Pieris brassicae is a specialist herbivore of plants containing glucosinolates, a specific class of defensive secondary metabolites. Caterpillars of P. brassicae are known to actively spit on attacking natural enemies, including their main parasitoid, the braconid wasp Cotesia glomerata. Here, we tested the hypothesis that variation in the secondary metabolites of host plants affects the efficacy of caterpillar regurgitant as an anti-predator defense. Using a total of 10 host plants with different glucosinolate profiles, we first studied natural regurgitation events of caterpillars on parasitoids. We then studied manual applications of water or regurgitant on parasitoids during parasitization events. Results from natural regurgitation events revealed that parasitoids spent more time grooming after attack when foraging on radish and nasturtium than on Brassica spp., and when the regurgitant came in contact with the wings rather than any other body part. Results from manual applications of regurgitant showed that all parameters of parasitoid behavior (initial attack duration, attack interruption, grooming time, and likelihood of a second attack) were more affected when regurgitant was applied rather than water. The proportion of parasitoids re-attacking a caterpillar within 15 min was the lowest when regurgitant originated from radish-fed caterpillars. However, we found no correlation between glucosinolate content and regurgitant effects, and parasitoid behavior was equally affected when regurgitant originated from a glucosinolate-deficient Arabidopsis thaliana mutant line. In conclusion, host plant affects to a certain extent the efficacy of spit from P. brassicae caterpillars as a defense against parasitoids, but this is not due to glucosinolate content. The nature of the defensive compounds present in the spit remains to be determined, and the ecological relevance of this anti-predator defense needs to be further evaluated in the field.

14.
Plant Cell Environ ; 39(9): 1920-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27043839

RESUMO

The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects (1) plant volatiles emitted in response to damage by a specialist herbivore, Pieris brassicae; (2) the attraction of the parasitic wasp Cotesia glomerata and (3) the performance of P. brassicae and C. glomerata. Plant volatiles were significantly induced by herbivory in both healthy and mildew-infected plants, but were quantitatively 41% lower for mildew-infected plants compared to healthy plants. Parasitoids strongly preferred Pieris-infested plants to dually-infested (Pieris + mildew) plants, and preferred dually infested plants over only mildew-infected plants. The performance of P. brassicae was unaffected by powdery mildew, but C. glomerata cocoon mass was reduced when parasitized caterpillars developed on mildew-infected plants. Thus, avoidance of mildew-infested plants may be adaptive for C. glomerata parasitoids, whereas P. brassicae caterpillars may suffer less parasitism on mildew-infected plants in nature. From a pest management standpoint, the concurrent presence of multiple plant antagonists can affect the efficiency of specific natural enemies, which may in turn have a negative impact on the regulation of pest populations.


Assuntos
Ascomicetos/fisiologia , Brassica rapa/microbiologia , Borboletas/parasitologia , Cadeia Alimentar , Compostos Orgânicos Voláteis/metabolismo , Vespas/fisiologia , Animais , Brassica rapa/metabolismo , Feminino , Herbivoria , Interações Hospedeiro-Parasita , Masculino , Olfato
15.
J Chem Ecol ; 42(3): 183-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27002323

RESUMO

Terrestrial molluscs and insect herbivores play a major role as plant consumers in a number of ecosystems, but their direct and indirect interactions have hardly been explored. The omnivorous nature of slugs makes them potential disrupters of predator-prey relationships, as a direct threat to small insects and through indirect, plant-mediated effects. Here, we examined the effects of the presence of two species of slugs, Arion rufus (native) and A. vulgaris (invasive) on the survivorship of young Pieris brassicae caterpillars when feeding on Brassica rapa plants, and on plant attractiveness to the main natural enemy of P. brassicae, the parasitoid Cotesia glomerata. In two separate predation experiments, caterpillar mortality was significantly higher on plants co-infested with A. rufus or A. vulgaris. Moreover, caterpillar mortality correlated positively with slug mass and leaf consumption by A. vulgaris. At the third trophic level, plants infested with slugs and plants co-infested with slugs and caterpillars were far less attractive to parasitoids than plants damaged by caterpillars only, independently of slug species. Chemical analyses confirmed that volatile emissions, which provide foraging cues for parasitoids, were strongly reduced in co-infested plants. Our study shows that the presence of slugs has the potential to affect insect populations, directly via consumptive effects, and indirectly via changes in plant volatiles that result in a reduced attraction of natural enemies. The fitness cost for P. brassicae imposed by increased mortality in presence of slugs may be counterbalanced by the benefit of escaping its parasitoids.


Assuntos
Brassica/parasitologia , Borboletas/fisiologia , Comportamento Alimentar , Gastrópodes/fisiologia , Interações Hospedeiro-Parasita , Himenópteros/fisiologia , Animais , Comportamento Predatório , Olfato
16.
J Exp Bot ; 66(17): 5327-36, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26034129

RESUMO

A number of plant endogenous elicitors have been identified that induce pattern-triggered immunity upon perception. In Arabidopsis thaliana eight small precursor proteins, called PROPEPs, are thought to be cleaved upon danger to release eight peptides known as the plant elicitor peptides Peps. As the expression of some PROPEPs is induced upon biotic stress and perception of any of the eight Peps triggers a defence response, they are regarded as amplifiers of immunity. Besides the induction of defences directed against microbial colonization Peps have also been connected with herbivore deterrence as they share certain similarities to systemins, known mediators of defence signalling against herbivores in solanaceous plants, and they positively interact with the phytohormone jasmonic acid. A recent study using maize indicated that the application of ZmPep3, a maize AtPep-orthologue, elicits anti-herbivore responses. However, as this study only assessed the responses triggered by the exogenous application of Peps, the biological significance of these findings remained open. By using Arabidopsis GUS-reporter lines, it is now shown that the promoters of both Pep-receptors, PEPR1 and PEPR2, as well as PROPEP3 are strongly activated upon herbivore attack. Moreover, pepr1 pepr2 double mutant plants, which are insensitive to Peps, display a reduced resistance to feeding Spodoptera littoralis larvae and a reduced accumulation of jasmonic acid upon exposure to herbivore oral secretions. Taken together, these lines of evidence extend the role of the AtPep-PEPR system as a danger detection mechanism from microbial pathogens to herbivores and further underline its strong interaction with jasmonic acid signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Spodoptera/fisiologia
17.
BMC Ecol ; 15: 17, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26031290

RESUMO

BACKGROUND: The role of plant ontogeny on investment in direct defense against herbivores is well accepted, but the transition from the vegetative to the reproductive stage can also affect indirect resistance traits (i.e. attraction of the natural enemies of plant attackers). Here, we conducted behavioral bioassays in olfactometers to determine whether the developmental stage (vegetative, pre-flowering, and flowering) of Brassica rapa plants affects attraction of Cotesia glomerata, a parasitoid of the herbivore Pieris brassicae, and examined the blends of volatile compounds emitted by plants at each developmental stage. RESULTS: Pieris-infested plants were always more attractive to parasitoids than control plants and plants infested by a non-host herbivore, independently of plant developmental stage. On the other hand, the relative attractiveness of Pieris-infested plants was ontogeny dependent: Pieris-infested plants were more attractive at the pre-flowering stage than at the vegetative stage, and more attractive at the vegetative stage than at the flowering stage. Chemical analyses revealed that the induction of leaf volatiles after herbivory is strongly reduced in flowering plants. The addition of synthetic floral volatiles to infested vegetative plants decreased their attractiveness to parasitoids, suggesting a trade-off between signaling to pollinators and parasitoids. CONCLUSION: Our results show that putative indirect resistance traits are affected by plant development, and are reduced during B. rapa reproductive stage. The effects of ontogenetic shifts in resource allocation on the behavior of members of the third trophic level may have important implications for the evolution of plant defense strategies against herbivores.


Assuntos
Brassica rapa/química , Borboletas/parasitologia , Flores/química , Compostos Orgânicos Voláteis/química , Vespas/fisiologia , Animais , Borboletas/fisiologia , Feminino , Herbivoria , Larva , Folhas de Planta/química
18.
Ecol Appl ; 24(4): 759-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988774

RESUMO

The impact of plant defenses on insect herbivores is widely accepted, but their relative effects on oviposition choice, survival, and larval growth in preventing pest damage, especially for invasive insects, is not fully understood. Here, we examined the potential for plant defenses to reduce the economic and environmental impacts of an invasive herbivore, the viburnum leaf beetle, VLB (Pyrrhalta viburni), on Viburnum species in North America. We used a common garden with 15 host Viburnum species of North American, European, and Asian origin and evaluated oviposition preferences, twig defense against oviposition (a reaction that crushes VLB eggs), larval performance in the lab and field, and foliar damage to mature shrubs in two consecutive years. VLB oviposition preference was the strongest predictor of plant damage, with twig defense and larval performance explaining little of the defoliation patterns. In particular, we showed that VLB females evade key defenses by choosing poorly defended twigs for oviposition; assays on the 15 Viburnum species revealed that adults laid over four times more eggs on dead (undefended) twigs than on living twigs. We additionally tested the hypothesis that shrubs with a higher proportion of dead twigs are preferentially chosen for oviposition, leading to more defoliation by larvae and increased dieback in the following year. We term this the infestation feedback hypothesis. Indeed, we report consistent positive correlations between percentage dieback, oviposition, and percentage defoliation across Viburnum species, and among individuals within two species tested separately (V. dentatum and V. opulus). Our results demonstrate that oviposition preference plays a major role in the susceptibility of Viburnum shrubs to the invasive VLB through adults choosing high-quality species for their larvae (a strong preference-performance correlation) and avoiding well-defended twigs among preferred species. More generally, where invasive insects can avoid plant defenses and when preference and performance are positively correlated, an infestation feedback loop can lead to persistent pest problems. Because dieback weakens Viburnum defenses by providing optimal oviposition sites, we recommend that Viburnum growers mechanically remove dead twigs from susceptible shrubs at the end of the growing season, especially in the early stages of VLB colonization.


Assuntos
Besouros/fisiologia , Herbivoria/fisiologia , Folhas de Planta/fisiologia , Viburnum/fisiologia , Animais , Feminino , Espécies Introduzidas , Oviposição/fisiologia
19.
Plant Cell Environ ; 37(8): 1854-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24689553

RESUMO

Insect herbivores trigger various biochemical changes in plants, and as a consequence, affect other organisms that are associated with these plants. Such plant-mediated indirect effects often involve herbivore-induced plant volatiles (HIPVs) that can be used as cues for foraging herbivores and their natural enemies, and are also known to affect pollinator attraction. In tightly co-evolved systems, the different trophic levels are expected to display adaptive response to changes in HIPVs caused by native herbivores. But what if a new herbivore invades such a system? Current literature suggests that exotic herbivores have the potential to affect HIPV production, and that plant responses to novel herbivores are likely to depend on phylogenetic relatedness between the invader and the native species. Here we review the different ways exotic herbivores can disrupt chemically mediated interactions between plants and the key users of HIPVs: herbivores, pollinators, and members of the third (i.e. predators and parasitoids) and fourth (i.e. hyperparasitoids) trophic levels. Current theory on insect invasions needs to consider that disruptive effects of invaders on infochemical networks can have a short-term impact on the population dynamics of native insects and plants, as well as exerting potentially negative consequences for the functioning of native ecosystems.


Assuntos
Ecossistema , Herbivoria , Insetos/fisiologia , Espécies Introduzidas , Plantas/química , Compostos Orgânicos Voláteis/química , Adaptação Biológica , Animais , Polinização
20.
New Phytol ; 203(1): 257-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24684288

RESUMO

Plant defense against herbivores may compromise attraction of mutualists, yet information remains limited about the mechanisms underlying such signaling tradeoffs. Here, we investigated the effects of foliar herbivory by two herbivore species on defense compounds, floral signaling, pollinator and parasitoid attraction, and seed production. Herbivory generally reduced the quantity of many floral volatile organic compounds VOCs) in Brassica rapa. By contrast, floral color, flower diameter, and plant height remained unaffected. The decreased amounts of floral volatiles led to reduced attractiveness of flowers to pollinators, but increased the attractiveness of herbivore-infested plants to parasitoids. Plants infested with the native butterfly Pieris brassicae produced more flowers during early flowering, effectively compensating for the lower olfactory attractiveness. Herbivory by the invasive Spodoptera littoralis increased the amounts of glucobrassicanapin, and led to delayed flowering. These plants tended to attract fewer pollinators and to produce fewer seeds. Our study indicates a tradeoff between pollinator attraction and indirect defense (parasitoid attraction), which can be mitigated by reduced floral VOC emission and production of more early flowers. We suggest that this compensatory mechanism is specific to plant-herbivore associations with a coevolutionary history.


Assuntos
Flores/fisiologia , Herbivoria , Polinização , Compostos Orgânicos Voláteis/química , Animais , Abelhas , Brassica rapa/fisiologia , Borboletas , Cor , Flores/anatomia & histologia , Flores/química , Spodoptera , Simbiose , Vespas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA