Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132326

RESUMO

Cerebrovascular pathology that involves altered protein levels (or signaling) of the transforming growth factor beta (TGFß) family has been associated with various forms of age-related dementias, including Alzheimer disease (AD) and vascular cognitive impairment and dementia (VCID). Transgenic mice overexpressing TGFß1 in the brain (TGF mice) recapitulate VCID-associated cerebrovascular pathology and develop cognitive deficits in old age or when submitted to comorbid cardiovascular risk factors for dementia. We characterized the cerebrovascular proteome of TGF mice using mass spectrometry (MS)-based quantitative proteomics. Cerebral arteries were surgically removed from 6-month-old-TGF and wild-type mice, and proteins were extracted and analyzed by gel-free nanoLC-MS/MS. We identified 3602 proteins in brain vessels, with 20 demonstrating significantly altered levels in TGF mice. For total and/or differentially expressed proteins (p ≤ 0.01, ≥ 2-fold change), using multiple databases, we (a) performed protein characterization, (b) demonstrated the presence of their RNA transcripts in both mouse and human cerebrovascular cells, and (c) demonstrated that several of these proteins were present in human extracellular vesicles (EVs) circulating in blood. Finally, using human plasma, we demonstrated the presence of several of these proteins in plasma and plasma EVs. Dysregulated proteins point to perturbed brain vessel vasomotricity, remodeling, and inflammation. Given that blood-isolated EVs are novel, attractive, and a minimally invasive biomarker discovery platform for age-related dementias, several proteins identified in this study can potentially serve as VCID markers in humans.

2.
Neuroimage Clin ; 40: 103503, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37742519

RESUMO

Aging is characterized by a gradual decline of the body's biological functions, which can lead to increased production of reactive oxygen species (ROS). Antioxidants neutralize ROS and maintain balance between oxidation and reduction. If ROS production exceeds the ability of antioxidant systems to neutralize, a damaging state of oxidative stress (OS) may exist. The reduced form of glutathione (GSH) is the most abundant antioxidant, and decline of GSH is considered a marker of OS. Our review summarizes the literature on GSH variations with age in healthy adults in brain (in vivo, ex vivo) and blood (plasma, serum), and reliability of in vivo magnetic resonance spectroscopy (MRS) measurement of GSH. A systematic PubMed search identified 35 studies. All in vivo MRS studies (N = 13) reported good to excellent reproducibility of GSH measures. In brain, 3 out of 4 MRS studies reported decreased GSH with age, measured in precuneus, cingulate, and occipital regions, while 1 study reported increased GSH with age in frontal and sensorimotor regions. In post-mortem brain, out of 3 studies, 2 reported decreased GSH with age in hippocampal and frontal regions, while 1 study reported increased GSH with age in a frontal region. Oxidized glutathione disulfide (GSSG) was reported to be increased in caudate with age in 1 study, suggesting OS. Although findings in the brain lacked a clear consensus, the majority of studies suggested a decline of GSH with age. The low number of studies (particularly ex vivo) and potential regional differences may have contributed to variability in the findings in brain. In blood, in contrast, GSH levels predominately were reported to decrease with advancing age (except in the oldest-old, who may represent a select group of particularly successful agers), while GSSG findings lacked consensus. The larger number of studies assessing age-specific GSH level changes in blood (N = 16) allowed for more robust consensus across studies than in brain. Overall, the literature suggests that aging is associated with increased OS in brain and body, but the timing and regional distribution of changes in the brain require further study. The contribution of brain OS to brain aging, and the effect of interventions to raise brain GSH levels on decline of brain function, remain understudied. Given that reliable tools to measure brain GSH exist, we hope this paper will serve as a catalyst to stimulate more work in this field.


Assuntos
Antioxidantes , Glutationa , Humanos , Adulto , Idoso de 80 Anos ou mais , Dissulfeto de Glutationa , Reprodutibilidade dos Testes , Espécies Reativas de Oxigênio , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA