Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Front Pharmacol ; 14: 1193282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426813

RESUMO

Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy -performed in a large and diverse chemolibrary- complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 µM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12-20 µM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7-45 µM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known "garbage in, garbage out" machine learning principle.

2.
RSC Adv ; 13(30): 20467-20476, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37435368

RESUMO

New derivatives of the known antipsychotic drug olanzapine have been obtained as potential compounds with anticancer activity in two metabolically different breast cancer cell lines: MCF-7 and triple negative MDA-MB-231. The compounds were obtained under phase transfer catalysis (PTC) in the presence of microwave irradiation (MW) or ultrasound (")))"), evaluating the effect of solvents such as dimethylformamide, water, or choline chloride/urea (natural deep eutectic solvent, NaDES). In the best option, the compounds were obtained within 2 minutes with a yield of 57-86% in MW. Two of the obtained compounds which have a naphthalimide moiety and a pentyl (7) or hexyl chain (8) show pronounced cytotoxicity. Interestingly, neither olanzapine nor desmethylolanzapine (DOLA), which was one of the substrates for the synthesis reaction, showed any significant activity in the study.

3.
Colloids Surf B Biointerfaces ; 229: 113439, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422991

RESUMO

Daphnetin (7,8-dihydroxy-coumarin, DAPH) is a naturally occurring coumarin presenting a wide array of biological activities. In the present study, daphnetin and its novel synthetic analogue 7,8-dihydroxy-4-methyl-3-(4-hydroxyphenyl)-coumarin (DHC) were encapsulated in solid lipid nanoparticles (SLNs) with Encapsulation Efficiency values of 80% and 40%, respectively. Nanoparticles of an average hydrodynamic diameter of approximately 250 nm were formed, showing a good stability in aqueous dispersion (polydispersity index 0.3-0.4), as determined by Dynamic Light Scattering (DLS). The SLNs were also characterized using Fourier Transform-Infrared (FT-IR) spectroscopy and Thermogravimetric Analysis (TGA). TEM images of the blank-SLNs indicated a spherical morphology and a size of 20-50 nm. The release studies of the coumarin analogues indicated a non-Fickian diffusion mechanism, while the release profiles better fitted on the Higuchi kinetic model. Moreover, the coumarin analogues and their SLNs were examined for their antioxidant activity using DPPH and anti-lipid peroxidation assays, exhibiting stronger antioxidant activity when encapsulated than in their free form. The coumarin derivatives and their SLNs were examined for their photodynamic therapy (PDT) efficacy against the human squamous carcinoma A431 cell line, with DHC coumarin both in its free and encapsulated form exhibiting significant PDT activity, reducing the cell viability to 11% after irradiation with a fluence rate of 2.16 J/cm2. Finally, the intracellular localization studies indicated the enhanced cellular uptake of the coumarin analogues when loaded in the SLNs.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Antioxidantes/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Lipídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cumarínicos/farmacologia , Cumarínicos/química , Nanopartículas/química , Tamanho da Partícula , Portadores de Fármacos
4.
Curr Res Food Sci ; 6: 100469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926417

RESUMO

The current saffron production system is generating several hundreds of tons of tepal waste, because only stigmas are used for food. Consequently, the valorization of saffron floral by-products by developing stable functional ingredients could lead to the environmental impact minimization. Thus, the main aim of this study was to develop innovative green extraction processes from saffron floral by-products by using Natural Deep Eutectic Solvents (NaDES) and ultrasound-assisted extraction (UAE) as ecological extraction method. Response surface methodology was used to optimize process parameters. To improve the stability of the optimal extracts, they were incorporated into chitosan/alginate hydrogels, studying their water-uptake and water retention capacity and the total phenolic content (TPC) during the in vitro digestion. The results indicated that the optimal extraction, regarding total phenolic and flavonoid content, was achieved in 20 min, using 180 W ultrasound power and 90% of NaDES. The results of the DPPH assay revealed the potent antioxidant activity of saffron floral by-products. The chitosan/alginate hydrogels incorporating the as-obtained NaDES extracts showed favorable properties whereas the TPC remained stable under intestinal conditions. Therefore, NaDES combined with UAE was an efficient technique to isolate high added-value compounds from saffron flowers, succeeding also the valorization of discarded waste by using green and low-cost strategies. Furthermore, these novel hydrogels could be used as promising candidates for food or cosmetic applications.

5.
Bioengineering (Basel) ; 10(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36829738

RESUMO

In this work, the preparation of inclusion complexes, (ICs) using magnesium phthalocyanine (MgPc) and various cyclodextrins (ß-CD, γ-CD, HP-ß-CD, Me-ß-CD), using the kneading method is presented. Dynamic light scattering (DLS) indicated that the particles in dispersion possessed mean size values between 564 to 748 nm. The structural characterization of the ICs by infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy provides evidence of the formation of the ICs. The release study of the MgPc from the different complexes was conducted at pH 7.4 and 37 °C, and indicated that a rapid release ("burst effect") of ~70% of the phthalocyanine occurred in the first 20 min. The kinetic model that best describes the release profile is the Korsmeyer-Peppas. The photodynamic therapy studies against the squamous carcinoma A431 cell line indicated a potent photosensitizing activity of MgPc (33% cell viability after irradiation for 3 min with 18 mW/cm2), while the ICs also presented significant activity. Among the different ICs, the γ-CD-MgPc IC exhibited the highest photokilling capacity under the same conditions (cell viability 26%). Finally, intracellular localization studies indicated the enhanced cellular uptake of MgPc after incubation of the cells with the γ-CD-MgPc complex for 4 h compared to MgPc in its free form.

6.
Molecules ; 29(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38202773

RESUMO

In this work, the privileged scaffold of 4-hydroxy-2quinolinone is investigated through the synthesis of carboxamides and hybrid derivatives, as well as through their bioactivity evaluation, focusing on the ability of the molecules to inhibit the soybean LOX, as an indication of their anti-inflammatory activity. Twenty-one quinolinone carboxamides, seven novel hybrid compounds consisting of the quinolinone moiety and selected cinnamic or benzoic acid derivatives, as well as three reverse amides are synthesized and classified as multi-target agents according to their LOX inhibitory and antioxidant activity. Among all the synthesized analogues, quinolinone-carboxamide compounds 3h and 3s, which are introduced for the first time in the literature, exhibited the best LOX inhibitory activity (IC50 = 10 µM). Furthermore, carboxamide 3g and quinolinone hybrid with acetylated ferulic acid 11e emerged as multi-target agents, revealing combined antioxidant and LOX inhibitory activity (3g: IC50 = 27.5 µM for LOX inhibition, 100% inhibition of lipid peroxidation, 67.7% ability to scavenge hydroxyl radicals and 72.4% in the ABTS radical cation decolorization assay; 11e: IC50 = 52 µM for LOX inhibition and 97% inhibition of lipid peroxidation). The in silico docking results revealed that the synthetic carboxamide analogues 3h and 3s and NDGA (the reference compound) bind at the same alternative binding site in a similar binding mode.


Assuntos
Quinolonas , 4-Quinolonas , Quinolonas/farmacologia , Peroxidação de Lipídeos , Amidas , Antioxidantes/farmacologia
7.
Antioxidants (Basel) ; 11(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421459

RESUMO

Flavanones and their biochemical precursors, chalcones, are naturally occurring compounds and consist of privileged scaffolds used in drug discovery due to their wide range of biological activities. In this work, two novel flavanones (3 and 4), the arylidene flavanone 5, and the chalcone 6, displaying structural analogies with butylated hydroxytoluene (BHT), were synthesized via an aldol reaction. According to the antioxidant activity studies of the synthesized flavanones, the arylidene flavanone 5 was the most potent antioxidant (70.8% interaction with DPPH radical and 77.4% inhibition of lipid peroxidation). In addition, the ability of the synthesized compounds to bind with ctDNA was measured via UV-spectroscopy, revealing that chalcone 6 has the strongest interaction with DNA (Kb = 5.0 × 10-3 M-1), while molecular docking was exploited to simulate the compound-DNA complexes. In an effort to explore the conformational features of the novel synthetic flavanones (3 and 4), arylidene flavanone 5, and chalcone 6, theoretical calculations were applied and the calculation of their physicochemical properties was also performed.

8.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641543

RESUMO

A series of novel multi-substituted coumarin derivatives were synthesized, spectroscopically characterized, and evaluated for their antioxidant activity, soybean lipoxygenase (LOX) inhibitory ability, their influence on cell viability in immortalized human keratinocytes (HaCaT), and cytotoxicity in adenocarcinomic human alveolar basal epithelial cells (A549) and human melanoma (A375) cells, in vitro. Coumarin analogues 4a-4f, bearing a hydroxyl group at position 5 of the coumarin scaffold and halogen substituents at the 3-phenyl ring, were the most promising ABTS•+ scavengers. 6,8-Dibromo-3-(4-hydroxyphenyl)-4-methyl-chromen-2-one (4k) and 6-bromo-3-(4,5-diacetyloxyphenyl)-4-methyl-chromen-2-one (3m) exhibited significant lipid peroxidation inhibitory activity (IC50 36.9 and 37.1 µM). In the DCF-DA assay, the 4'-fluoro-substituted compound 3f (100%), and the 6-bromo substituted compounds 3i (80.9%) and 4i (100%) presented the highest activity. The 3'-fluoro-substituted coumarins 3e and 4e, along with 3-(4-acetyloxyphenyl)-6,8-dibromo-4-methyl-chromen-2-one (3k), were the most potent lipoxygenase (LOX) inhibitors (IC50 11.4, 4.1, and 8.7 µM, respectively) while displaying remarkable hydroxyl radical scavenging ability, 85.2%, 100%, and 92.9%, respectively. In silico docking studies of compounds 4e and 3k, revealed that they present allosteric interactions with the enzyme. The majority of the analogues (100 µΜ) did not affect the cell viability of HaCaT cells, though several compounds presented over 60% cytotoxicity in A549 or A375 cells. Finally, the human oral absorption (%HOA) and plasma protein binding (%PPB) properties of the synthesized coumarins were also estimated using biomimetic chromatography, and all compounds presented high %HOA (>99%) and %PPB (60-97%) values.


Assuntos
Cumarínicos/síntese química , Cumarínicos/farmacocinética , Inibidores de Lipoxigenase/farmacologia , Células A549 , Antioxidantes/química , Antioxidantes/farmacologia , Biomimética , Proteínas Sanguíneas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Fluoresceínas/química , Corantes Fluorescentes/química , Sequestradores de Radicais Livres/química , Humanos , Queratinócitos/efeitos dos fármacos , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacocinética , Simulação de Acoplamento Molecular , Glycine max/enzimologia
9.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066803

RESUMO

2'-hydroxy-chalcones are naturally occurring compounds with a wide array of bioactivity. In an effort to delineate the structural features that favor antioxidant and lipoxygenase (LOX) inhibitory activity, the design, synthesis, and bioactivity profile of a series of 2'-hydroxy-chalcones bearing diverse substituents on rings A and B, are presented. Among all the synthesized derivatives, chalcone 4b, bearing two hydroxyl substituents on ring B, was found to possess the best combined activity (82.4% DPPH radical scavenging ability, 82.3% inhibition of lipid peroxidation, and satisfactory LOX inhibition value (IC50 = 70 µM). Chalcone 3c, possessing a methoxymethylene substituent on ring A, and three methoxy groups on ring B, exhibited the most promising LOX inhibitory activity (IC50 = 45 µM). A combination of in silico techniques were utilized in an effort to explore the crucial binding characteristics of the most active compound 3c and its analogue 3b, to LOX. A common H-bond interaction pattern, orienting the hydroxyl and carbonyl groups of the aromatic ring A towards Asp768 and Asn128, respectively, was observed. Regarding the analogue 3c, the bulky (-OMOM) group does not seem to participate in a direct binding, but it induces an orientation capable to form H-bonds between the methoxy groups of the aromatic ring B with Trp130 and Gly247.


Assuntos
Antioxidantes/química , Antioxidantes/metabolismo , Chalconas/química , Chalconas/metabolismo , Desenho de Fármacos , Glycine max/enzimologia , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/metabolismo , Lipoxigenase/metabolismo , Antioxidantes/farmacologia , Chalconas/farmacologia , Ligação de Hidrogênio , Radical Hidroxila , Concentração Inibidora 50 , Peroxidação de Lipídeos/efeitos dos fármacos , Inibidores de Lipoxigenase/farmacologia , Simulação de Acoplamento Molecular/métodos , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
10.
Mol Divers ; 25(1): 307-321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32328962

RESUMO

Coumarins possess a wide array of therapeutic capabilities, but often with unclear mechanism of action. We tested a small library of 18 coumarin derivatives against human invasive breast ductal carcinoma cells with the capacity of each compound to inhibit cell proliferation scored, and the most potent coumarin analogues selected for further studies. Interestingly, the presence of two prenyloxy groups (5,7-diprenyloxy-4-methyl-coumarin, 4g) or the presence of octyloxy substituent (coumarin 4d) was found to increase the potency of compounds in breast cancer cells, but not against healthy human fibroblasts. The activity of potent compounds on breast cancer cells cultured more similarly to the conditions of the tumour microenvironment was also investigated, and increased toxicity was observed. Results suggest that tested coumarin derivatives could potentially reduce the growth of tumour mass. Moreover, their use as (combination) therapy in cancer treatment might have the potential of causing limited side effects.


Assuntos
Materiais Biomiméticos/farmacologia , Neoplasias da Mama/patologia , Cumarínicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/química , Desenho de Fármacos , Feminino , Humanos , Concentração Inibidora 50 , Modelos Biológicos
11.
Mol Divers ; 25(2): 723-740, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32065346

RESUMO

The present project deals with the investigation of structure-activity relationship of several quinolinone-chalcone and quinolinone-pyrazoline hybrids, in an effort to discover promising antioxidant and anti-inflammatory agents. In order to accomplish this goal, four bioactive hybrid quinolinone-chalcone compounds (8a-8d) were synthesized via an aldol condensation reaction, which were then chemically modified, forming fifteen new pyrazoline analogues (9a-9o). All the synthesized analogues were in vitro evaluated in terms of their antioxidant and soybean lipoxygenase (LOX) inhibitory activity. Among all the pyrazoline derivatives, compounds 9b and 9m were found to possess the best combined activity, whereas 9b analogue exhibited the most potent LOX inhibitory activity, with IC50 value 10 µM. The in silico docking results revealed that the synthetic pyrazoline analogue 9b showed high AutoDock Vina score (- 10.3 kcal/mol), while all the tested derivatives presented allosteric interactions with the enzyme.


Assuntos
Anti-Inflamatórios , Antioxidantes , Inibidores de Lipoxigenase , Pirazóis , Quinolonas , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antioxidantes/síntese química , Antioxidantes/química , Compostos de Bifenilo/química , Ácido Linoleico/química , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Lipoxigenases/química , Simulação de Acoplamento Molecular , Picratos/química , Pirazóis/síntese química , Pirazóis/química , Quinolonas/síntese química , Quinolonas/química , Glycine max/enzimologia
12.
Polymers (Basel) ; 13(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379388

RESUMO

Tyrosol, a natural product present in olive oil and white wine, possesses a wide range of bioactivity. The aim of this study was to optimize the preparation of nanosystems encapsulating tyrosol in carbohydrate matrices and the investigation of their ability to bind with DNA. The first encapsulation matrix of choice was chitosan using the ionic gelation method. The second matrix was ß-cyclodextrin (ßCD) using the kneading method. Coating of the tyrosol-ßCD ICs with chitosan resulted in a third nanosystem with very interesting properties. Optimal preparation parameters of each nanosystem were obtained through two three-factor, three-level Box-Behnken experimental designs and statistical analysis of the results. Thereafter, the nanoparticles were evaluated for their physical and thermal characteristics using several techniques (DLS, NMR, FT-IR, DSC, TGA). The study was completed with the investigation of the impact of the encapsulation on the ability of tyrosol to bind to calf thymus DNA. The results revealed that tyrosol and all the studied systems bind to the minor groove of ctDNA. Tyrosol interacts with ctDNA via hydrogen bond formation, as predicted via molecular modeling studies and corroborated by the experiments. The tyrosol-chitosan nanosystem does not show any binding to ctDNA whereas the ßCD inclusion complex shows analogous interaction with that of free tyrosol.

13.
J Anal Methods Chem ; 2020: 8876082, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376620

RESUMO

The oxidative desulfurization of five (5) model sulfur compounds and eleven (11) surrogate blends was investigated using the hydrogen peroxide (H2O2)-acetic acid (CH3COOH) system. Consequently, extractive desulfurization was carried out using conventional solvents. The model sulfur compounds, as well as the solvent, are present in petroleum middle distillates. The selection of the compounds was made so that they represent various kinds of sulfur compounds. The goal of this study was the implementation of a simple and economical oxidative and extractive system for the desulfurization of surrogate mixtures with an intermediate sulfur concentration 1% w/w, at the mild temperature of 70°C, and without the use of supplementary and assisting methods such as heterogeneous catalysis or ultrasound irradiation. The sulfur content was estimated using X-ray fluorescence. The progress of the oxidation reaction was monitored using liquid FT-IR. The solid sediments of the oxidation procedure were identified with solid-state FT-IR and 1H NMR spectroscopy.

14.
Pharmaceutics ; 12(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708823

RESUMO

Chitosan is a cationic natural polysaccharide, which has emerged as an increasingly interesting biomaterialover the past few years. It constitutes a novel perspective in drug delivery systems and nanocarriers' formulations due to its beneficial properties, including biocompatibility, biodegradability and low toxicity. The potentiality of chemical or enzymatic modifications of the biopolymer, as well as its complementary use with other polymers, further attract the scientific community, offering improved and combined properties in the final materials. As a result, chitosan has been extensively used as a matrix for the encapsulation of several valuable compounds. In this review article, the advantageous character of chitosan as a matrix for nanosystemsis presented, focusing on the encapsulation of natural products. A five-year literature review is attempted covering the use of chitosan and modified chitosan as matrices and coatings for the encapsulation of natural extracts, essential oils or pure naturally occurring bioactive compounds are discussed.

15.
Antioxidants (Basel) ; 9(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340224

RESUMO

The natural process of aging gradually causes changes in living organisms, leading to the deterioration of organs, tissues, and cells. In the case of osteoarthritis (OA), the degradation of cartilage is a result of both mechanical stress and biochemical factors. Natural products have already been evaluated for their potential role in the prevention and treatment of OA, providing a safe and effective adjunctive therapeutic approach. This review aimed to assess the therapeutic potential of natural products and their derivatives in osteoarthritis via a systematic search of literature after 2008, including in vitro, in vivo, ex vivo, and animal models, along with clinical trials and meta-analysis. Overall, 170 papers were obtained and screened. Here, we presented findings referring to the preventative and therapeutic potential of 17 natural products and 14 naturally occurring compounds, underlining, when available, the mechanisms implicated. The nature of OA calls to initially focus on the management of symptoms, and, in that context, several naturally occurring compounds have been utilized. Underlying a global need for more sustainable natural sources for treatment, the evidence supporting their chondroprotective potential is still building up. However, arriving at that kind of solution requires more clinical research, targeting the implications of long-term treatment, adverse effects, and epigenetic implications.

16.
Drug Dev Res ; 81(4): 456-469, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31943295

RESUMO

Eighteen 3-aryl-5-substituted-coumarins-six 5-acetyloxy-derivatives, six 5-hydroxy-derivatives, and six 5-geranyloxy-derivatives-were synthesized, structurally characterized and their antioxidant activity, lipoxygenase inhibitory ability, as well as their cytotoxic activity against human neuroblastoma SK-N-SH and HeLa adenocarcinoma cell lines were evaluated. The 5-acetyloxy-compounds 3a-3f were found to be the best cytotoxic agents among all the compounds studied. The bromo-substituted coumarins 3a and 3b were remarkably active against HeLa cell line showing IC50 1.8 and 6.1 µM, respectively. Coumarin 5e possessing a geranyloxy-chain on position 5 of the coumarin scaffold presented dual bioactivity, while 5-geranyloxy-coumarin 5f was the most competent soybean lipoxygenase inhibitor of this series (IC50 10 µM). As shown by in silico docking studies, the studied molecules present allosteric interactions with soybean lipoxygenases.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Cumarínicos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/química , Células HeLa , Humanos , Concentração Inibidora 50 , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Simulação de Acoplamento Molecular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Relação Estrutura-Atividade
17.
Molecules ; 24(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731542

RESUMO

The prevalence of invasive fungal infections has been dramatically increased as the size of the immunocompromised population worldwide has grown. Aspergillus fumigatus is characterized as one of the most widespread and ubiquitous fungal pathogens. Among antifungal drugs, azoles have been the most widely used category for the treatment of fungal infections. However, increasingly, azole-resistant strains constitute a major problem to be faced. Towards this direction, our study focused on the identification of compounds bearing novel structural motifs which may evolve as a new class of antifungals. To fulfil this scope, a combination of in silico techniques and in vitro assays were implemented. Specifically, a ligand-based pharmacophore model was created and served as a 3D search query to screen the ZINC chemical database. Additionally, molecular docking and molecular dynamics simulations were used to improve the reliability and accuracy of virtual screening results. In total, eight compounds, bearing completely different chemical scaffolds from the commercially available azoles, were proposed and their antifungal activity was evaluated using in vitro assays. Results indicated that all tested compounds exhibit antifungal activity, especially compounds 1, 2, and 4, which presented the most promising minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values and, therefore, could be subjected to further hit to lead optimization.


Assuntos
Antifúngicos/química , Aspergillus fumigatus/efeitos dos fármacos , Azóis/química , Infecções Fúngicas Invasivas/tratamento farmacológico , Antifúngicos/farmacologia , Aspergillus fumigatus/patogenicidade , Azóis/farmacologia , Simulação por Computador , Bases de Dados de Compostos Químicos , Farmacorresistência Fúngica , Humanos , Infecções Fúngicas Invasivas/microbiologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
18.
Nanomedicine (Lond) ; 14(14): 1889-1909, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31274373

RESUMO

The eye is a very important, yet sensitive organ, presenting complex anatomy. To overcome its protective mechanisms, with the aim of improving drug delivery, drug encapsulation in nanocarriers is considered in this review. Chitosan is found to be an excellent drug carrier and its application in ophthalmology is being extensively researched. This mucoadhesive biopolymer can protect the encapsulated molecule, optimize its mode of action and minimize any existent risk. Moreover, chitosan and its derivatives may provide advantageous properties to the system such as thermoresponsivity and pH dependency. Finally, dual systems of chitosan with other carriers, such as poly (lactic-co-glycolic acid) and alginate, are also mentioned in this review, as they may offer additional benefits such as higher permeation due to different interaction of each carrier with the corneal layers.


Assuntos
Quitosana/química , Preparações de Ação Retardada/química , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Administração Oftálmica , Animais , Sistemas de Liberação de Medicamentos/métodos , Olho/efeitos dos fármacos , Olho/metabolismo , Oftalmopatias/tratamento farmacológico , Oftalmopatias/metabolismo , Humanos , Nanotecnologia/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
19.
J Agric Food Chem ; 67(17): 4746-4753, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30966749

RESUMO

A green approach for the encapsulation of Mentha pulegium essential oil in commercial baker's yeast and its evaluation as a pesticide against the insect pest Myzus persicae are presented. Upon treating aqueous yeast cell dispersion with the essential oil, the formation of essential-oil-loaded microparticles of about 9 µm is observed, with a loading capacity ranging from 29 to 36%, depending upon the encapsulation conditions. The thermal properties of the microparticles were characterized using differential scanning calorimetry and thermogravimetric analysis, confirming the protection of the essential oil from the cells. Encapsulation prolonged the insecticidal activity of the essential oil by 3 days.


Assuntos
Composição de Medicamentos/métodos , Química Verde/métodos , Inseticidas/química , Mentha pulegium/química , Óleos Voláteis/química , Extratos Vegetais/química , Leveduras/química , Animais , Afídeos/efeitos dos fármacos , Afídeos/crescimento & desenvolvimento , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia
20.
N Biotechnol ; 49: 10-18, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30529567

RESUMO

Laccase-like multicopper oxidases (LMCOs) are a heterogeneous group of oxidases, acting mainly on phenolic compounds and which are widespread among many microorganisms, including Basidiomycetes and Ascomycetes. Here, we report the cloning, heterologous expression, purification and characterization of a novel LMCO from the thermophilic fungus Thermothelomyces thermophila. The 1953 bp lmco gene sequence comprises of 3 exons interrupted by 2 introns and according to the LccED database the translated sequence belongs to superfamily 6 of multicopper oxidases. After removal of the introns, the gene was transformed into Pichia pastoris, under the control of the alcohol oxidase (AOX1) promoter. The heterologous enzyme was purified with an apparent molecular weight of 80 kDa. TtLMCO1 displayed optimum activity at pH 4 and 50 °C and appeared thermostable up to 50 °C. A variety of phenolic compounds were oxidized by TtLMCO1, including standard laccase substrates such as ABTS and 2,6 dimethoxyphenol. The UV/Vis spectrum of purified TtLMCO1 indicates that it belongs to yellow laccase-like oxidases. The enzyme was used for the bioconversion of 2',3,4-trihydroxychalcone to 3',4'-dihydroxy-aurone, a bioactive aurone recently shown to possess inhibitory activity against several isoforms of the histone deacetylase complex (HDAC). Overall, the thermophilic yellow LMCO TtLMCO1 presents a number of superior properties with potential use in industrial biocatalysis.


Assuntos
Chalconas/metabolismo , Lacase/metabolismo , Oxirredutases/metabolismo , Sordariales/enzimologia , Temperatura , Chalconas/química , Sulfato de Cobre/farmacologia , Ciclização , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Metanol/farmacologia , Oxirredução , Pichia/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/metabolismo , Solventes , Espectrofotometria Ultravioleta , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA