Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 32(7): e2646, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35524985

RESUMO

Estimating tree leaf biomass can be challenging in applications where predictions for multiple tree species is required. This is especially evident where there is limited or no data available for some of the species of interest. Here we use an extensive national database of observations (61 species, 3628 trees) and formulate models of varying complexity, ranging from a simple model with diameter at breast height (DBH) as the only predictor to more complex models with up to 8 predictors (DBH, leaf longevity, live crown ratio, wood specific gravity, shade tolerance, mean annual temperature, and mean annual precipitation), to estimate tree leaf biomass for any species across the continental United States. The most complex with all eight predictors was the best and explained 74%-86% of the variation in leaf mass. Consideration was given to the difficulty of measuring all of these predictor variables for model application, but many are easily obtained or already widely collected. Because most of the model variables are independent of species and key species-level variables are available from published values, our results show that leaf biomass can be estimated for new species not included in the data used to fit the model. The latter assertion was evaluated using a novel "leave-one-species-out" cross-validation approach, which showed that our chosen model performs similarly for species used to calibrate the model, as well as those not used to develop it. The models exhibited a strong bias toward overestimation for a relatively small subset of the trees. Despite these limitations, the models presented here can provide leaf biomass estimates for multiple species over large spatial scales and can be applied to new species or species with limited leaf biomass data available.


Assuntos
Folhas de Planta , Árvores , Biomassa , Clima , Estados Unidos , Madeira
2.
Ecol Appl ; 29(1): e01817, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326541

RESUMO

Tree leaf mass is a small, highly variable, but critical, component of forest ecosystems. Estimating leaf mass on standing trees with models is challenging because leaf mass varies both within and between tree species and at different locations and points in time. Typically, models for estimating tree leaf mass are species specific, empirical models that predict intraspecific variation from stem diameter at breast height (dbh). Such models are highly limited in their application because there are many other factors beyond tree girth and species that cause leaf mass to vary and because such models provide no way to predict leaf mass for species for which data are not available. We conducted destructive sampling of 17 different species in Michigan, covering multiple life history traits and sizes, to investigate the potential for using a single, "trans-species" model for predicting leaf mass for all the trees in our study. Our results show the most important predictors of tree leaf mass are dbh, five-year basal area increment, crown class, and competition index, none of which are species specific. Species-specific variation could be captured by leaf longevity and shade tolerance. Wood specific gravity was a statistically significant, but marginally important predictor. Together, these variables describing tree size, life-history traits, and competitive environment allowed us to develop a generalized leaf mass model applicable to a diverse set of species, without having to develop species-specific equations.


Assuntos
Ecossistema , Árvores , Florestas , Michigan , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA