Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2113561119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394862

RESUMO

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.


Assuntos
COVID-19 , COVID-19/mortalidade , Confiabilidade dos Dados , Previsões , Humanos , Pandemias , Probabilidade , Saúde Pública/tendências , Estados Unidos/epidemiologia
2.
JMIR Form Res ; 4(12): e24490, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33331823

RESUMO

BACKGROUND: One of the major challenges in the health care sector is that approximately 80% of generated data remains unstructured and unused. Since it is difficult to handle unstructured data from electronic medical record systems, it tends to be neglected for analyses in most hospitals and medical centers. Therefore, there is a need to analyze unstructured big data in health care systems so that we can optimally utilize and unearth all unexploited information from it. OBJECTIVE: In this study, we aimed to extract a list of diseases and associated keywords along with the corresponding time durations from an indigenously developed electronic medical record system and describe the possibility of analytics from the acquired datasets. METHODS: We propose a novel, finite-state machine to sequentially detect and cluster disease names from patients' medical history. We defined 3 states in the finite-state machine and transition matrix, which depend on the identified keyword. In addition, we also defined a state-change action matrix, which is essentially an action associated with each transition. The dataset used in this study was obtained from an indigenously developed electronic medical record system called eyeSmart that was implemented across a large, multitier ophthalmology network in India. The dataset included patients' past medical history and contained records of 10,000 distinct patients. RESULTS: We extracted disease names and associated keywords by using the finite-state machine with an accuracy of 95%, sensitivity of 94.9%, and positive predictive value of 100%. For the extraction of the duration of disease, the machine's accuracy was 93%, sensitivity was 92.9%, and the positive predictive value was 100%. CONCLUSIONS: We demonstrated that the finite-state machine we developed in this study can be used to accurately identify disease names, associated keywords, and time durations from a large cohort of patient records obtained using an electronic medical record system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA