Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Adv ; 10(22): eadk3121, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809988

RESUMO

Regular, long-term aspirin use may act synergistically with genetic variants, particularly those in mechanistically relevant pathways, to confer a protective effect on colorectal cancer (CRC) risk. We leveraged pooled data from 52 clinical trial, cohort, and case-control studies that included 30,806 CRC cases and 41,861 controls of European ancestry to conduct a genome-wide interaction scan between regular aspirin/nonsteroidal anti-inflammatory drug (NSAID) use and imputed genetic variants. After adjusting for multiple comparisons, we identified statistically significant interactions between regular aspirin/NSAID use and variants in 6q24.1 (top hit rs72833769), which has evidence of influencing expression of TBC1D7 (a subunit of the TSC1-TSC2 complex, a key regulator of MTOR activity), and variants in 5p13.1 (top hit rs350047), which is associated with expression of PTGER4 (codes a cell surface receptor directly involved in the mode of action of aspirin). Genetic variants with functional impact may modulate the chemopreventive effect of regular aspirin use, and our study identifies putative previously unidentified targets for additional mechanistic interrogation.


Assuntos
Anti-Inflamatórios não Esteroides , Neoplasias Colorretais , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Masculino , Predisposição Genética para Doença , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Loci Gênicos , Idoso
2.
EBioMedicine ; 104: 105146, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749303

RESUMO

BACKGROUND: Consumption of fibre, fruits and vegetables have been linked with lower colorectal cancer (CRC) risk. A genome-wide gene-environment (G × E) analysis was performed to test whether genetic variants modify these associations. METHODS: A pooled sample of 45 studies including up to 69,734 participants (cases: 29,896; controls: 39,838) of European ancestry were included. To identify G × E interactions, we used the traditional 1--degree-of-freedom (DF) G × E test and to improve power a 2-step procedure and a 3DF joint test that investigates the association between a genetic variant and dietary exposure, CRC risk and G × E interaction simultaneously. FINDINGS: The 3-DF joint test revealed two significant loci with p-value <5 × 10-8. Rs4730274 close to the SLC26A3 gene showed an association with fibre (p-value: 2.4 × 10-3) and G × fibre interaction with CRC (OR per quartile of fibre increase = 0.87, 0.80, and 0.75 for CC, TC, and TT genotype, respectively; G × E p-value: 1.8 × 10-7). Rs1620977 in the NEGR1 gene showed an association with fruit intake (p-value: 1.0 × 10-8) and G × fruit interaction with CRC (OR per quartile of fruit increase = 0.75, 0.65, and 0.56 for AA, AG, and GG genotype, respectively; G × E -p-value: 0.029). INTERPRETATION: We identified 2 loci associated with fibre and fruit intake that also modify the association of these dietary factors with CRC risk. Potential mechanisms include chronic inflammatory intestinal disorders, and gut function. However, further studies are needed for mechanistic validation and replication of findings. FUNDING: National Institutes of Health, National Cancer Institute. Full funding details for the individual consortia are provided in acknowledgments.

3.
medRxiv ; 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37398462

RESUMO

Background and aims: An increasing body of observational studies has linked fructose intake to colorectal cancer (CRC). African Americans (AAs) are significantly more likely than European Americans to consume greater quantities of fructose and to develop right-side colon cancer. Yet, a mechanistic link between these two associations remains poorly defined. We aimed to identify differentially methylated regions (DMRs) associated with dietary fructose consumption measures obtained from food frequency questionnaires in a cohort of normal colon biopsies derived from AA men and women (n=79). Methods: DNA methylation data from this study was obtained using the Illumina Infinium MethylationEPIC kit and is housed under accession GSE151732. DMR analysis was carried out using DMRcate in right and matched left colon, separately. Secondary analysis of CRC tumors was carried out using data derived from TCGA-COAD, GSE101764 and GSE193535. Differential expression analysis was carried out on CRC tumors from TCGA-COAD using DESeq2 . Results: We identified 4,263 right-side fructose-DMRs. In contrast, only 24 DMRs survived multiple testing corrections (FDR<0.05) in matched, left colon. To identify targets by which dietary fructose drives CRC risk, we overlaid these findings with data from three CRC tumor datasets. Remarkably, almost 50% of right-side fructose-DMRs overlapped regions associated with CRC in at least one of three datasets. TNXB and CDX2 ranked among the most significant fructose risk DMRs in right and left colon respectively that also displayed altered gene expression in CRC tumors. Conclusions: Our mechanistic data support the notion that fructose has a greater CRC-related effect in right than left AA colon, alluding to a potential role for fructose in contributing to racial disparities in CRC.

4.
Cancer Epidemiol Biomarkers Prev ; 32(3): 315-328, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36576985

RESUMO

BACKGROUND: Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. METHODS: A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. RESULTS: Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10-8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20-1.30] compared with the other genotypes (OR <1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10-8) and 8q24.23 (rs7005722, P = 2.88 × 10-8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09-1.16) compared with the other genotypes (OR <1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07-1.28) compared with the other genotypes (OR <1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). CONCLUSIONS: Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. IMPACT: These findings can guide potential prevention treatments.


Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , Humanos , Neoplasias Colorretais/epidemiologia , Fumar/genética , Fatores de Risco , Genótipo , Inflamação , Fumar Tabaco , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles
5.
Cancer Prev Res (Phila) ; 15(10): 679-688, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36095330

RESUMO

Observational studies indicate that calcium supplementation may protect against colorectal cancer. Stratified analyses suggest that this protective effect may differ based on anatomic subsite and sex, but these hypotheses have been difficult to test experimentally. Here, we exposed 36 patient-derived organoid lines derived from normal colon biopsies (21 right colons, 15 left colons) of unrelated subjects (18 female, 18 male) to moderate (1.66 mmol/L) or high (5.0 mmol/L) concentrations of calcium for 72 hours. We performed bulk RNA-sequencing to measure gene expression, and cell composition was inferred using single-cell deconvolution in CIBERSORTx. We tested for significant differences in gene expression using generalized linear models in DESeq2. Exposure to higher levels of calcium was associated with changes in cell composition (P < 0.05), most notably increased goblet and reduced stem cell populations, and differential expression of 485 genes (FDR < 0.05). We found that 40 of these differentially expressed genes mapped to genomic loci identified through colorectal cancer genome-wide association studies, suggesting a potential biologic overlap between calcium supplementation and inherited colorectal cancer risk. Stratified analyses identified more differentially expressed genes in colon organoids derived from right sided colon and male subjects than those derived from left sided colon and female subjects. We confirmed the presence of a stronger right-sided effect for one of these genes, HSD17B2 using qPCR in a subset of matched right and left colon organoids (n = 4). By relating our findings to genetic data, we provide new insights into how nutritional and genetic factors may interact to influence colorectal cancer risk. PREVENTION RELEVANCE: A chemopreventive role for calcium in colorectal cancer is still unclear. Here, we identify mechanisms through which calcium supplementation may reduce risk. Calcium supplementation increased differentiation and altered expression of colorectal cancer-related genes in a large study of patient-derived colon organoids. These findings were influenced by colon location and sex.


Assuntos
Produtos Biológicos , Neoplasias Colorretais , Cálcio/metabolismo , Colo/patologia , Neoplasias Colorretais/patologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Organoides , RNA/metabolismo , Transcriptoma
6.
Cancers (Basel) ; 14(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077675

RESUMO

Early onset colorectal cancer (EOCRC) rates have increased in recent decades. While lowering the recommended age for routine colonoscopies to 45 may reduce this burden, such measures do not address those who develop CRC before that age. Additional measures are needed to identify individuals at-risk for CRC. To better define transcriptomic events that precede the development of CRC, we performed RNA-sequencing analysis in colon organoids derived from seven healthy and six familial adenomatous polyposis (FAP) patients. This led to the identification of 2635 significant differentially expressed genes (FDR < 0.05). Through secondary analysis of publicly available datasets, we found that these genes were enriched for significant genes also present in FAP CRC and non-hereditary CRC datasets, including a subset that were unique to EOCRC. By exposing FAP colon organoids to a three-day ethanol treatment, we found that two EOCRC-relevant genes were also targets of CRC related lifestyle factors. Our data provides unique insight into the potential, early mechanisms of CRC development in colon epithelial cells, which may provide biomarkers for patient monitoring. We also show how modifiable lifestyle factors may further alter genes relevant to EOCRC, adding weight to the hypothesis that such factors represent an important contributor to increased EOCRC incidence.

7.
Clin Epigenetics ; 14(1): 104, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999641

RESUMO

BACKGROUND: Familial adenomatous polyposis (FAP) is an inherited colorectal cancer (CRC) syndrome resulting from germ line mutations in the adenomatous polyposis coli (APC) gene. While FAP accounts for less than 1% of all CRC cases, loss of APC expression is seen in > 80% of non-hereditary CRCs. To better understand molecular mechanisms underlying APC-driven CRC, we performed an epigenome-wide analysis of colon organoids derived from normal-appearing colons of FAP patients versus healthy subjects to identify differentially methylated regions (DMRs) that may precede the onset of CRC. RESULTS: We identified 358 DMRs when comparing colon organoids of FAP patients to those of healthy subjects (FDR < 0.05, |mean beta difference| = 5%). Of these, nearly 50% of DMRs were also differentially methylated in at least one of three CRC tumor and normal adjacent tissue (NAT) cohorts (TCGA-COAD, GSE193535 and ColoCare). Moreover, 27 of the DMRs mapped to CRC genome-wide association study (GWAS) loci. We provide evidence suggesting that some of these DMRs led to significant differences in gene expression of adjacent genes using quantitative PCR. For example, we identified significantly greater expression of five genes: Kazal-type serine peptidase inhibitor domain 1 (KAZALD1, P = 0.032), F-Box and leucine-rich repeat protein 8 (FBXL8, P = 0.036), TRIM31 antisense RNA 1 (TRIM31-AS1, P = 0.036), Fas apoptotic inhibitory molecule 2 (FAIM2, P = 0.049) and (Collagen beta (1-0)galactosyltransferase 2 (COLGALT2, P = 0.049). Importantly, both FBXL8 and TRIM31-AS1 were also significantly differentially expressed in TCGA-COAD tumor versus matched NAT, supporting a role for these genes in CRC tumor development. CONCLUSIONS: We performed the first DNA methylome-wide analysis of normal colon organoids derived from FAP patients compared to those of healthy subjects. Our results reveal that normal colon organoids from FAP patients exhibit extensive epigenetic differences compared to those of healthy subjects that appear similar to those exhibited in CRC tumor. Our analyses therefore identify DMRs and candidate target genes that are potentially important in CRC tumor development in FAP, with potential implications for non-hereditary CRC.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias do Colo , Neoplasias Colorretais , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Metilação de DNA , Estudo de Associação Genômica Ampla , Humanos , Organoides/patologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
8.
Cancer Epidemiol Biomarkers Prev ; 31(5): 1077-1089, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438744

RESUMO

BACKGROUND: Currently known associations between common genetic variants and colorectal cancer explain less than half of its heritability of 25%. As alcohol consumption has a J-shape association with colorectal cancer risk, nondrinking and heavy drinking are both risk factors for colorectal cancer. METHODS: Individual-level data was pooled from the Colon Cancer Family Registry, Colorectal Transdisciplinary Study, and Genetics and Epidemiology of Colorectal Cancer Consortium to compare nondrinkers (≤1 g/day) and heavy drinkers (>28 g/day) with light-to-moderate drinkers (1-28 g/day) in GxE analyses. To improve power, we implemented joint 2df and 3df tests and a novel two-step method that modifies the weighted hypothesis testing framework. We prioritized putative causal variants by predicting allelic effects using support vector machine models. RESULTS: For nondrinking as compared with light-to-moderate drinking, the hybrid two-step approach identified 13 significant SNPs with pairwise r2 > 0.9 in the 10q24.2/COX15 region. When stratified by alcohol intake, the A allele of lead SNP rs2300985 has a dose-response increase in risk of colorectal cancer as compared with the G allele in light-to-moderate drinkers [OR for GA genotype = 1.11; 95% confidence interval (CI), 1.06-1.17; OR for AA genotype = 1.22; 95% CI, 1.14-1.31], but not in nondrinkers or heavy drinkers. Among the correlated candidate SNPs in the 10q24.2/COX15 region, rs1318920 was predicted to disrupt an HNF4 transcription factor binding motif. CONCLUSIONS: Our study suggests that the association with colorectal cancer in 10q24.2/COX15 observed in genome-wide association study is strongest in nondrinkers. We also identified rs1318920 as the putative causal regulatory variant for the region. IMPACT: The study identifies multifaceted evidence of a possible functional effect for rs1318920.


Assuntos
Neoplasias Colorretais , Estudo de Associação Genômica Ampla , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Polimorfismo de Nucleotídeo Único , Fatores de Risco
9.
Cancers (Basel) ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36612042

RESUMO

Approximately 90% of colorectal cancer (CRC) develop over the age of 50, highlighting the important role of aging in CRC risk. African Americans (AAs) shoulder a greater CRC burden than European Americans (EA) and are more likely to develop CRC at a younger age. The effects of aging in AA and EA normal rectal tissue have yet to be defined. Here, we performed epigenome-wide DNA methylation analysis in the first, large-scale biracial cohort of normal rectum (n = 140 samples). We identified increased epigenetic age acceleration in EA than AA rectum (p = 3.91 × 10-4) using linear regression. We also identified differentially methylated regions (DMRs) associated with chronological aging in AA and EA, separately using DMRcate. Next, a consensus set of regions associated with cancer was identified through DMR analysis of two rectal cancer cohorts. The vast majority of AA DMRs were present in our analysis of aging in rectum of EA subjects, though rates of epigenetic drift were significantly greater in AA (p = 1.94 × 10-45). However, 3.66-fold more DMRs were associated with aging in rectum of EA subjects, many of which were also associated with rectal cancer. Our findings reveal a novel relationship between race, age, DNA methylation and rectal cancer risk that warrants further investigation.

10.
Cancer Prev Res (Phila) ; 14(12): 1089-1100, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34389629

RESUMO

Mechanisms underlying aspirin chemoprevention of colorectal cancer remain unclear. Prior studies have been limited because of the inability of preclinical models to recapitulate human normal colon epithelium or cellular heterogeneity present in mucosal biopsies. To overcome some of these obstacles, we performed in vitro aspirin treatment of colon organoids derived from normal mucosal biopsies to reveal transcriptional networks relevant to aspirin chemoprevention. Colon organoids derived from 38 healthy individuals undergoing endoscopy were treated with 50 µmol/L aspirin or vehicle control for 72 hours and subjected to bulk RNA sequencing. Paired regression analysis using DESeq2 identified differentially expressed genes (DEG) associated with aspirin treatment. Cellular composition was determined using CIBERSORTx. Aspirin treatment was associated with 1,154 significant (q < 0.10) DEGs prior to deconvolution. We provide replication of these findings in an independent population-based RNA-sequencing dataset of mucosal biopsies (BarcUVa-Seq), where a significant enrichment for overlap of DEGs was observed (P < 2.2E-16). Single-cell deconvolution revealed changes in cell composition, including a decrease in transit-amplifying cells following aspirin treatment (P = 0.01). Following deconvolution, DEGs included novel putative targets for aspirin such as TRABD2A (q = 0.055), a negative regulator of Wnt signaling. Weighted gene co-expression network analysis identified 12 significant modules, including two that contained hubs for EGFR and PTGES2, the latter being previously implicated in aspirin chemoprevention. In summary, aspirin treatment of patient-derived colon organoids using physiologically relevant doses resulted in transcriptome-wide changes that reveal altered cell composition and improved understanding of transcriptional pathways, providing novel insight into its chemopreventive properties. PREVENTION RELEVANCE: Numerous studies have highlighted a role for aspirin in colorectal cancer chemoprevention, though the mechanisms driving this association remain unclear. We addressed this by showing that aspirin treatment of normal colon organoids diminished the transit-amplifying cell population, inhibited prostaglandin synthesis, and dysregulated expression of novel genes implicated in colon tumorigenesis.


Assuntos
Organoides , Transcriptoma , Aspirina/farmacologia , Colo/patologia , Humanos , Análise de Sequência de RNA/métodos
11.
Oncotarget ; 12(8): 767-782, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33889300

RESUMO

Approximately 15% of colorectal cancer (CRC) cases present with high levels of microsatellite instability (MSI-H). Bulk RNA-sequencing approaches have been employed to elucidate transcriptional differences between MSI-H and microsatellite stable (MSS) CRC tumors. These approaches are frequently confounded by the complex cellular heterogeneity of tumors. We performed single-cell deconvolution of bulk RNA-sequencing on The Cancer Genome Atlas colon adenocarcinoma (TCGA-COAD) dataset. Cell composition within each dataset was estimated using CIBERSORTx. Cell composition differences were analyzed using linear regression. Significant differences in abundance were observed for 13 of 19 cell types between MSI-H and MSS/MSI-L tumors in TCGA-COAD. This included a novel finding of increased enteroendocrine (q = 3.71E-06) and reduced colonocyte populations (q = 2.21E-03) in MSI-H versus MSS/MSI-L tumors. We were able to validate some of these differences in an independent biopsy dataset. By incorporating cell composition into our regression model, we identified 3,193 differentially expressed genes (q = 0.05), of which 556 were deemed novel. We subsequently validated many of these genes in an independent dataset of colon cancer cell lines. In summary, we show that some of the challenges associated with cellular heterogeneity can be overcome using single-cell deconvolution, and through our analysis we highlight several novel gene targets for further investigation.

12.
Hum Mutat ; 42(3): 237-245, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476087

RESUMO

Several genome wide association studies of colorectal cancer (CRC) have identified single nucleotide polymorphisms (SNPs) on chromosome 15q13.3 associated with CRC risk. To identify functional variant(s) underlying this association, we investigated SNPs in linkage disequilibrium with the risk-associated SNP rs4779584 that overlapped regulatory regions/enhancer elements characterized in colon-related tissues and cells. We identified several SNP-containing regulatory regions that exhibited enhancer activity in vitro, including one SNP (rs1406389) that correlated with allele-specific effects on enhancer activity. Deletion of either this enhancer or another enhancer that had previously been reported in this region correlated with decreased expression of GREM1 following CRISPR/Cas9 genome editing. That GREM1 is one target of these enhancers was further supported by an expression quantitative trait loci correlation between rs1406389 and GREM1 expression in the transverse but not sigmoid colon in the Genotype-Tissue Expression dataset. Taken together, we conclude that the 15q13.3 region contains at least two functional variants that map to distinct enhancers and impact CRC risk through modulation of GREM1 expression.


Assuntos
Neoplasias Colorretais , Peptídeos e Proteínas de Sinalização Intercelular , Polimorfismo de Nucleotídeo Único , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA