Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 31(1): 135-146, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685296

RESUMO

The present study was aimed to formulate and evaluate fast dissolving oral film of Rosuvastatin calcium to improve its bioavailability in comparison to typical solid oral dosage forms. The drug was formulated as solid dispersion with hydrophilic polymers and assessed for different constraints such as drug content, saturated solubility, and drug-polymer interaction. Best formula was selected and prepared in the form of orodispersible film. The films were developed by solvent casting method and examined for weight variations, drug content, folding endurance, pH, swelling profile, disintegration time, and in vitro dissolution. Further pharmacokinetic study was also performed on rabbit and compared with that of the marketed oral formulation. The drug and the polymers were found to be compatible with each other by FTIR study. Maximum solubility was found at drug polymer ratio of 1:4 and that was 54.53 ± 2.05 µg/mL. The disintegration time of the developed film was observed to be 10 ± 2.01 s, while release of the Rosuvastatin from the film was found to be 99.06 ± 0.40 in 10 min. Stability study shown that developed film was stable for three months. Further pharmacokinetic study revealed that developed orodispersible film had enhance oral bioavailability as compared to marketed product (Crestor® tablets). Conclusively, the study backs the development of a viable ODF of Rosuvastatin with better bioavailability.

2.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36145303

RESUMO

A liposphere system for intranasal delivery of quetiapine fumarate (QTF) was created to assess the potential for enhanced drug delivery. We investigated the effects of particle size, entrapment effectiveness, poly dispersibility index, and pluronic incorporation percentage on these variables. The optimal formula was examined using a TEM, and investigations into DSC, XRD, and FTIR were made. Optimized liposphere formulation in vitro dissolution investigation with a mean diameter of 294.4 ± 18.2 nm revealed about 80% drug release in 6 h. The intranasal injection of QTF-loaded lipospheres showed a shorter Tmax compared to that of intranasal and oral suspension, per the findings of an in vivo tissue distribution investigation in Wistar mice. Lipospheres were able to achieve higher drug transport efficiency (DTE %) and direct nose-to-brain drug transfer (DTP %). A potentially effective method for delivering QTF to specific brain regions is the liposphere system.

3.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36015089

RESUMO

This study aimed to formulate and statistically optimize glycerosomal formulations of Quetiapine fumarate (QTF) to increase its oral bioavailability and enhance its brain delivery. The study was designed using a Central composite rotatable design using Design-Expert® software. The independent variables in the study were glycerol % w/v and cholesterol % w/v, while the dependent variables were vesicle size (VS), zeta potential (ZP), and entrapment efficiency percent (EE%). The numerical optimization process resulted in an optimum formula composed of 29.645 (w/v%) glycerol, 0.8 (w/v%) cholesterol, and 5 (w/v%) lecithin. It showed a vesicle size of 290.4 nm, zeta potential of -34.58, and entrapment efficiency of 80.85%. The optimum formula was further characterized for DSC, XRD, TEM, in-vitro release, the effect of aging, and pharmacokinetic study. DSC thermogram confirmed the compatibility of the drug with the ingredients. XRD revealed the encapsulation of the drug in the glycerosomal nanovesicles. TEM image revealed spherical vesicles with no aggregates. Additionally, it showed enhanced drug release when compared to a drug suspension and also exhibited good stability for one month. Moreover, it showed higher brain Cmax, AUC0-24, and AUC0-∞ and plasma AUC0-24 and AUC0-∞ in comparison to drug suspension. It showed brain and plasma bioavailability enhancement of 153.15 and 179.85%, respectively, compared to the drug suspension. So, the optimum glycerosomal formula may be regarded as a promising carrier to enhance the oral bioavailability and brain delivery of Quetiapine fumarate.

4.
Saudi J Biol Sci ; 27(7): 1766-1772, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565694

RESUMO

The emergence of drug-resistant organisms have been increasing globally; therefore, it is a burning need to find an alternative drug to get rid of the diseases caused by resistant strains. This study aims to evaluate the antimicrobial and wound healing activities of Loranthus acacia, Cassia obtusifolia and Cymbopogon proximus plants. All the plants were collected and extracted - by maceration method. Antimicrobial activities determined using standard ATCC strain for Gram-positive bacteria (Bacillus subtilis, Bacillus crew, Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus) and Gram-negative bacteria (Shigella sonnnei, Salmonella Typhimurium, Salmonella typhi, Klebsiella pnuemoniae, Escherichia coli and Pseudomonas aeruginosa) following agar well diffusion method. Plants extracts were prepared as gel and investigated for in vivo wound healing activities in rats. Histological studies were performed on animals' skin. The results showed that all tested plants have various antimicrobial and wound healing activities. Out of these plants, L. acacia exhibited the best result; it revealed a significant result for antimicrobial activities counter to all Gram-positive, Gram-negative bacteria and wound healing activities in comparing with the reference drug. Thus, it is essential to consider L. acacia as a prospective source in progress in the synthesis of a new antimicrobial drug for the treatment of infectious diseases.

5.
Saudi J Biol Sci ; 27(6): 1475-1481, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32489283

RESUMO

Various metabolites exist in the medicinal plants have lot of potential to cure various diseases and disorders. Plants such as, Vetiveria zizanioides, Trichosanthes cucumerina, and Mollugo cerviana were collected from Western Ghats, Tamilnadu, India. Phytochemicals were extracted from these plants using various organic solvents and tested against Gram-positive and Gram-negative bacteria. The phytochemicals such as, carbohydrate, alkaloids, steroids, saponins, flavonoids and tannin were detected from these medicinal plants. Among the extracts, methanol showed potent activity and this solvent was used to extract polyherbal medicinal plants. Methanol extract of V. zizanioides was found to be highly active against E. coli (27 ± 2 mm), P. mirabilis (19 ± 3 mm) and B. subtilis (18 ± 2 mm). Ethyl acetate extract showed high activity against E. coli (24 ± 2 mm), P. mirabilis (22 ± 3 mm) and B. subtilis (20 ± 1 mm). These three plants were taken at 1:1:1 ratio and extracted with methanol at 1:10 ratio and synergistic activity was tested against bacterial pathogens. Synergistic activity of polyherbal extract was analyzed. The extracted crude herbal medicine was found to be effective against Staphylococcus aureus, E. coli, Enterbacter sp., Pseudomonas aeruginosa, Bacillus subtilis and Proteus mirabilis. The zone of inhibition was 33 ± 3 mm, 17 ± 2 mm, 22 ± 2 mm, 40 ± 2 mm, 33 ± 1 mm and 38 ± 2 mm zone of inhibition against E. coli, S. aureus, P. aeruginosa, P. mirabilis, B. subtilis and Enterobacter sp. Polyherbal extract was found to be highly effective against P. mirabilis and Enterobacter sp. MIC values of polyherbal extract ranged from 29 ± 2.5 µg/ml to 34 ± 2.5 µg/ml. MIC value was found to be less against P. mirabilis and was high against S. aureus. Antioxidant property varied between 49 ± 3% and 95.3 ± 2%. At 20 µg/ml antioxidant activity was reported as 49 ± 3% and it was increased at higher concentrations of polyherbal extract. Two cell lines (HeLa and MCF cell lines) were selected to analyze cytotoxic activity of polyherbal extract. The methanol extract of polyherbal fraction showed cytotoxicity against these two cell lines. The LC50 value was 467 ± 2.9 µg/ml against HeLa cell line and >800 µg/ml against MCF-7 cell lines. The polyherbal extract showed antibacterial, antioxidant and anticancer activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA