Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Immun Ageing ; 21(1): 28, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715114

RESUMO

BACKGROUND: Ageing leads to altered immune responses, resulting in higher susceptibility to certain infections in the elderly. Immune ageing is a heterogeneous process also associated with inflammaging, a low-grade chronic inflammation. Altered cytotoxic T cell responses and cytokine storm have previously been described in severe COVID-19 cases, however the parameters responsible for such immune response failures are not well known. The aim of our study was to characterize CD8+ T cells and cytokines associated with ageing, in a cohort of patients aged over 70 years stratified by COVID-19 severity. RESULTS: One hundred and four patients were included in the study. We found that, in older people, COVID-19 severity was associated with (i) higher level of GM-CSF, CXCL10 (IP-10), VEGF, IL-1ß, CCL2 (MCP-1) and the neutrophil to lymphocyte ratio (NLR), (ii) increased terminally differentiated CD8+T cells, and (ii) decreased early precursors CD8+ T stem cell-like memory cells (TSCM) and CD27+CD28+. The cytokines mentioned above were found at higher concentrations in the COVID-19+ older cohort compared to a younger cohort in which they were not associated with disease severity. CONCLUSIONS: Our results highlight the particular importance of the myeloid lineage in COVID-19 severity among older people. As GM-CSF and CXCL10 were not associated with COVID-19 severity in younger patients, they may represent disease severity specific markers of ageing and should be considered in older people care.

2.
Blood Coagul Fibrinolysis ; 35(1): 14-22, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051662

RESUMO

Laboratory compliance implies to correlate instruments for coagulation parameter with a wide range of measure using patient samples or commercialized sets of frozen plasmas. The aim of this study was to evaluate the intra, inter-reproducibility and long-term stability of ExpertCor Routine (ECR) plasma sets (Stago) on different parameters. The study was realized in two laboratories on four different instruments. Inter-site and intra-site correlation of ECR sets for PT, aPTT, Fibrinogen, INR, factor V (FV) UFH and LMWH anti-Xa and intra-reproducibility of DDimer (DDI), factor VIII (FVIII:C) and antithrombin (AT) assays were tested. To evaluate ECR long-term stability, samples were tested until 180 after delivery in one laboratory. Intra-site evaluation correlation coefficients is around 1. All predefined criteria to fulfil good comparability between inter-site instruments are met with Passing slopes between 0.9 and 1.1 and intercepts ranging from -0.62 to 2.83%. Long-term stability evaluation does not show any deviation over 180 days for aPTT, fibrinogen, DDI, UFH, LMWH but a drift for FV with STA-NeoPTimal reagent. On contrary, AT and FVIII:C are not stable. PT in second has an excellent stability unlike PT in percentage. Our study validates the use of ECR sets for correlation between instruments and inter-sites agreement, as for parameters claimed on the products than for factor V and FVIII:C. The evaluation of stability confirming the possible extension of use for 180 days after delivery except for FVIII:C and AT. These plasmas sets are an excellent alternative to local plasma patient use to perform instrument comparison.


Assuntos
Fator V , Hemostáticos , Humanos , Heparina de Baixo Peso Molecular , Reprodutibilidade dos Testes , Coagulação Sanguínea , Testes de Coagulação Sanguínea , Fibrinogênio
3.
Front Bioeng Biotechnol ; 10: 886483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651551

RESUMO

Pancreatic islet transplantation improves metabolic control and prevents complications in patients with brittle type 1 diabetes (T1D). However, chronic immunosuppression is required to prevent allograft rejection and recurrence of autoimmunity. Islet encapsulation may eliminate the need for immunosuppression. Here, we analyzed in parallel two microencapsulation platforms that provided long-term diabetes reversal in preclinical T1D models, alginate single and double capsules versus polyethylene glycol conformal coating, to identify benefits and weaknesses that could inform the design of future clinical trials with microencapsulated islets. We performed in vitro and in vivo functionality assays with human islets and analyzed the explanted grafts by immunofluorescence. We quantified the size of islets and capsules, measured capsule permeability, and used these data for in silico simulations of islet functionality in COMSOL Multiphysics. We demonstrated that insulin response to glucose stimulation is dependent on capsule size, and the presence of permselective materials augments delays in insulin secretion. Non-coated and conformally coated islets could be transplanted into the fat pad of diabetic mice, resulting in comparable functionality and metabolic control. Mac-2+ cells were found in conformally coated grafts, indicating possible host reactivity. Due to their larger volume, alginate capsules were transplanted in the peritoneal cavity. Despite achieving diabetes reversal, changes in islet composition were found in retrieved capsules, and recipient mice experienced hypoglycemia indicative of hyperinsulinemia induced by glucose retention in large capsules as the in silico model predicted. We concluded that minimal capsule size is critical for physiological insulin secretion, and anti-inflammatory modulation may be beneficial for small conformal capsules.

4.
Am J Pathol ; 191(12): 2184-2194, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560063

RESUMO

Collagen XIV is poorly characterized in the body, and the current knowledge of its function in the cornea is limited. The aim of the current study was to elucidate the role(s) of collagen XIV in regulating corneal stromal structure and function. Analysis of collagen XIV expression, temporal and spatial, was performed at different postnatal days (Ps) in wild-type C57BL/6 mouse corneal stromas and after injury. Conventional collagen XIV null mice were used to inquire the roles that collagen XIV plays in fibrillogenesis, fibril packing, and tissue mechanics. Fibril assembly and packing as well as stromal organization were evaluated using transmission electron microscopy and second harmonic generation microscopy. Atomic force microscopy was used to assess stromal stiffness. Col14a1 mRNA expression was present at P4 to P10 and decreased at P30. No immunoreactivity was noted at P150. Abnormal collagen fibril assembly with a shift toward larger-diameter fibrils and increased interfibrillar spacing in the absence of collagen XIV was found. Second harmonic generation microscopy showed impaired fibrillogenesis in the collagen XIV null stroma. Mechanical testing suggested that collagen XIV confers stiffness to stromal tissue. Expression of collagen XIV is up-regulated following injury. This study indicates that collagen XIV plays a regulatory role in corneal development and in the function of the adult cornea. The expression of collagen XIV is recapitulated during wound healing.


Assuntos
Colágeno/fisiologia , Substância Própria/fisiologia , Substância Própria/ultraestrutura , Envelhecimento/fisiologia , Animais , Colágeno/genética , Córnea/diagnóstico por imagem , Córnea/metabolismo , Córnea/ultraestrutura , Paquimetria Corneana , Substância Própria/diagnóstico por imagem , Substância Própria/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Microscopia de Geração do Segundo Harmônico , Tomografia de Coerência Óptica
5.
Br J Haematol ; 190(5): 718-722, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32542672

RESUMO

Complementary tools are warranted to increase the sensitivity of the initial testing for COVID-19. We identified a specific 'sandglass' aspect on the white blood cell scattergram of COVID-19 patients reflecting the presence of circulating plasmacytoid lymphocytes. Patients were dichotomized as COVID-19-positive or -negative based on reverse transcriptase polymerase chain reaction (RT-PCR) and chest computed tomography (CT) scan results. Sensitivity and specificity of the 'sandglass' aspect were 85·9% and 83·5% respectively. The positive predictive value was 94·3%. Our findings provide a non-invasive and simple tool to quickly categorize symptomatic patients as either COVID-19-probable or -improbable especially when RT-PCR and/or chest CT are not rapidly available.


Assuntos
Betacoronavirus/metabolismo , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Linfócitos/metabolismo , Programas de Rastreamento , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19 , Infecções por Coronavirus/diagnóstico por imagem , Feminino , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico por imagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Tomografia Computadorizada por Raios X
6.
Invest Ophthalmol Vis Sci ; 61(5): 61, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32462201

RESUMO

Purpose: The aim of this study was to determine the roles of collagen XII in the regulation of stromal hierarchical organization, keratocyte organization, and corneal mechanics. Methods: The temporal and spatial expression of collagen XII at postnatal days 4, 10, 30, 90, and 150 were evaluated in wild-type (WT) mice. The role of collagen XII in hierarchical organization was analyzed by measuring fibril diameter and density, as well as stromal lamellar structure, within ultrastructural micrographs obtained from WT and collagen XII-deficient mice (Col12a1-/-). Keratocyte morphology and networks were assessed using actin staining with phalloidin and in vivo confocal microscopy. The effects of collagen XII on corneal biomechanics were evaluated with atomic force microscopy. Results: Collagen XII was localized homogeneously in the stroma from postnatal day 4 to day 150, and protein accumulation was shown to increase during this period using semiquantitative immunoblots. Higher fibril density (P < 0.001) and disruption of lamellar organization were found in the collagen XII null mice stroma when compared to WT mice. Keratocyte networks and organization were altered in the absence of collagen XII, as demonstrated using fluorescent microscopy after phalloidin staining and in vivo confocal microscopy. Corneal stiffness was increased in the absence of collagen XII. Young's modulus was 16.2 ± 5.6 kPa in WT and 32.8 ± 6.4 kPa in Col12a1-/- corneas. The difference between these two groups was significant (P < 0.001, t-test). Conclusions: Collagen XII plays a major role in establishing and maintaining stromal structure and function. In the absence of collagen XII, the corneal stroma showed significant abnormalities, including decreased interfibrillar space, disrupted lamellar organization, abnormal keratocyte organization, and increased corneal stiffness.


Assuntos
Colágeno Tipo XII/fisiologia , Substância Própria/anatomia & histologia , Substância Própria/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Colágeno Tipo XII/biossíntese , Ceratócitos da Córnea/fisiologia , Masculino , Camundongos
7.
Mol Vis ; 25: 593-xxx, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31741652

RESUMO

Purpose: To quantify the partition coefficient and the diffusion coefficient of metal-carrier proteins in the human lens capsule as a function of age. Methods: Whole lenses from human donors were incubated overnight in a solution of fluorescently labeled transferrin, albumin, or ceruloplasmin. In the central plane of the capsule thickness, fluorescence recovery after photobleaching (FRAP) experiments were conducted to measure the diffusion of the protein within the lens capsule. The anterior portion of the lens was recorded before the FRAP experiments to locate the boundaries of the anterior lens capsule and to measure the partition coefficient of the labeled proteins. The partition coefficient (P), the time to half maximum recovery of the fluorescent intensity (τ1/2), and the diffusion coefficient (D) for each protein were analyzed as a function of donor age. Results: There was no statistically significant relationship between the half maximum recovery time or the diffusion coefficient and age for transferrin (molecular weight [MW]=79.5 kDa, τ1/2=17.26±4.840 s, D=0.17±0.05 µm2/s), serum albumin (MW=66.5 kDa, τ1/2=18.45±6.110 s, D=0.17±0.06 µm2/s), or ceruloplasmin (MW=120 kDa, τ1/2=36.57±5.660 s, D=0.08±0.01 µm2/s). As expected, the larger protein (ceruloplasmin) took longer to recover fluorescent intensity due to its slower movement within the lens capsule. The partition coefficient statistically significantly increased with age for each protein (Palbumin: 0.09-0.71, Pceruloplasmin: 0.42-0.95, Ptransferrin: 0.19-1.17). Conclusions: The diffusion of heavy-metal protein carriers within the anterior lens capsule is not dependent on age, but it is dependent on the size of the protein. The permeability of the lens capsule to these heavy-metal protein carriers increases with age, suggesting that there will be a higher concentration of heavy metals in the older lens. This behavior may favor the formation of cataract, because heavy metals enhance protein oxidation through the Fenton reaction.


Assuntos
Envelhecimento/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Cápsula do Cristalino/diagnóstico por imagem , Adulto , Idoso , Albuminas/metabolismo , Ceruloplasmina/metabolismo , Difusão , Humanos , Cápsula do Cristalino/metabolismo , Pessoa de Meia-Idade , Transferrina/metabolismo , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 115(38): 9362-9366, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29279384

RESUMO

Wholly synthetic molecules involving both mechanical bonds and a folded secondary structure are one of the most promising architectures for the design of functional molecular machines with unprecedented properties. Here, we report dynamic single-molecule force spectroscopy experiments that explore the energetic details of donor-acceptor oligorotaxane foldamers, a class of molecular switches. The mechanical breaking of the donor-acceptor interactions responsible for the folded structure shows a high constant rupture force over a broad range of loading rates, covering three orders of magnitude. In comparison with dynamic force spectroscopy performed during the past 20 y on various (bio)molecules, the near-equilibrium regime of oligorotaxanes persists at much higher loading rates, at which biomolecules have reached their kinetic regime, illustrating the very fast dynamics and remarkable rebinding capabilities of the intramolecular donor-acceptor interactions. We focused on one single interaction at a time and probed the stochastic rupture and rebinding paths. Using the Crooks fluctuation theorem, we measured the mechanical work produced during the breaking and rebinding to determine a free-energy difference, ΔG, of 6 kcal·mol-1 between the two local conformations around a single bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA