Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Chem ; 275: 116623, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38943875

RESUMO

A new series of thiazolidine-2,4-dione tethered 1,2,3-triazole derivatives were designed, synthesized and screened for their α-amylase inhibitory potential employing in vitro and in silico approaches. The target compounds were synthesized with the help of Cu (I) catalyzed [3 + 2] cycloaddition of terminal alkyne with numerous azides, followed by unambiguously characterizing the structure by employing various spectroscopic approaches. The synthesized derivatives were assessed for their in vitro α-amylase inhibition and it was found that thiazolidine-2,4-dione derivatives 6e, 6j, 6o, 6u and 6x exhibited comparable inhibition with the standard drug acarbose. The compound 6e with a 7-chloroquinolinyl substituent on the triazole ring exhibited significant inhibition potential with IC50 value of 0.040 µmol mL-1 whereas compound 6c (IC50 = 0.099 µmol mL-1) and 6h (IC50 = 0.098 µmol mL-1) were poor inhibitors. QSAR studies revealed the positively correlating descriptors that aid in the design of novel compounds. Molecular docking was performed to investigate the binding interactions with the active site of the biological receptor and the stability of the complex over a period of 100 ns was examined using molecular dynamics studies. The physiochemical properties and drug-likeliness behavior of the potent derivatives were investigated by carrying out the ADMET studies.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Tiazolidinedionas , Triazóis , alfa-Amilases , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , Tiazolidinedionas/química , Tiazolidinedionas/síntese química , Tiazolidinedionas/farmacologia , Estrutura Molecular , Relação Dose-Resposta a Droga , Humanos
2.
J Mech Behav Biomed Mater ; 147: 106145, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797557

RESUMO

The review paper starts with the introduction to hydrogels along with broad literature survey covering different modes of synthesis including high energy radiation methods. After that, paper covered broad classification of the hydrogels depending upon the basis of their source of origin, method of synthesis, type of cross-linking present and ionic charges on bound groups. Another advanced category response triggered hydrogels, which includes pH, temperature, electro, and light and substrate responsive hydrogels was also studied. Presented paper summarises chemical structure, properties, and synthesis of different kinds of hydrogels. Main focus was given to the preparation super absorbents such as: Semi-interpenetrating networks (semi-IPNs), Interpenetrating networks (IPNs) and cross-linked binary graft copolymers (BGCPs). The weak mechanical properties and easy degradation limit the uses of bio-based -hydrogels in biomedical field. Their properties can be improved through different chemical and physical methods. These methods were also discussed in the current research paper. Also, it includes development of hydrogels as controlled drug delivery devices, as implants and biomaterials to replace malfunctioned body parts along with their use in several other applications listed in the literature. Literature survey on the application of hydrogels in different fields like biomedical, nano-biotechnology, tissue engineering, drug delivery and agriculture was also carried out.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Hidrogéis/química , Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Temperatura , Polímeros/química
3.
Future Med Chem ; 15(16): 1511-1525, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37610859

RESUMO

Aim: To enrich the pool of α-amylase inhibitors to manage Type 2 diabetes. Methods: Synthesis, conformational study, α-amylase inhibitory action and various in silico studies of novel N'-(arylbenzylidene)-2-(4,9-dioxo-4,9-dihydro-1H-naphtho[2,3-d]imidazol-1-yl)acetohydrazides carried out. Results: Compound H6 demonstrated the highest activity (IC50 = 0.0437 µmol mL-1) among the tested compounds. Structure-activity relationship study suggested that variable substitution at the aryl ring has a pivotal role in determining the inhibitory action of tested compounds. Docking simulations of the most active compound (H6) confirmed its interaction potential with active site residues of A. oryzae α-amylase. The root-mean-square deviation fluctuations substantiated the stability of protein-ligand complex. Absorption, distribution, metabolism and excretion prediction revealed optimal values for absorption, distribution, metabolism and excretion parameters. Conclusion: The developed molecules could be beneficial for the development of novel α-amylase inhibitors to treat Type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hidrazonas , Humanos , Hidrazonas/farmacologia , alfa-Amilases , Diabetes Mellitus Tipo 2/tratamento farmacológico , Simulação de Acoplamento Molecular , Imidazóis/farmacologia , Imidazóis/química , Relação Estrutura-Atividade
4.
Future Med Chem ; 15(14): 1273-1294, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37551699

RESUMO

Aim: The primary objective of this investigation was the synthesis, spectral interpretation and evaluation of the α-amylase inhibition of rationally designed thiazolidinedione-triazole conjugates (7a-7aa). Materials & methods: The designed compounds were synthesized by stirring a mixture of thiazolidine-2,4-dione, propargyl bromide, cinnamaldehyde and azide derivatives in polyethylene glycol-400. The α-amylase inhibitory activity of the synthesized conjugates was examined by integrating in vitro and in silico studies. Results: The investigated derivatives exhibited promising α-amylase inhibitory activity, with IC50 values ranging between 0.028 and 0.088 µmol ml-1. Various computational approaches were employed to get detailed information about the inhibition mechanism. Conclusion: The thiazolidinedione-triazole conjugate 7p, with IC50 = 0.028 µmol ml-1, was identified as the best hit for inhibiting α-amylase.

5.
Chem Asian J ; 18(19): e202300406, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37602577

RESUMO

Supramolecular assemblies of perylene bisimide derivative (PBI-SAH) have been developed which show 'turn-on' detection of chlorpyrifos in aqueous media, apple residue and blood serum. Differently from the already reported fluorescent probes for the detection of CPF, PBI-SAH assemblies also show affinity for acetylcholinesterase (AChE) which endow the PBI-SAH molecules with mixed inhibitory potential to restrict the AChE catalysed hydrolysis of acetylthiocholine (ATCh) in MG-63 cell lines (in vitro) and in mice (in vivo). The molecular docking studies support the inhibitory activity of PBI-SAH assemblies and their potential to act as safe insecticide with high benefit to harm ratio. The insecticidal potential of PBI-SAH derivative has been examined against Spodoptera litura (S. litura) and these studies demonstrate its excellent insecticidal activity (100 % mortality in nineteen days). To the best of our knowledge, this is the first report regarding development of PBI-SAH assemblies which not only detect chlorpyrifos but also mimic AChE inhibitory activity of CPF to show promising aptitude as safe insecticide.

6.
BMC Microbiol ; 23(1): 95, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37013477

RESUMO

BACKGROUND: Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) also known as tobacco caterpillar, is one of the most serious polyphagous pests that cause economic losses to a variety of commercially important agricultural crops. Over the past few years, many conventional insecticides have been used to control this pest. However, the indiscriminate use of these chemicals has led to development of insecticide resistant populations of S. litura in addition to harmful effects on environment. Due to these ill effects, the emphasis is being laid on alternative eco-friendly control measures. Microbial control is one of the important components of integrated pest management. Thus, in search for novel biocontrol agents, the current work was carried out with the aim to evaluate the insecticidal potential of soil bacteria against S. litura. RESULTS: Among the tested soil bacterial isolates (EN1, EN2, AA5, EN4 and R1), maximum mortality (74%) was exhibited by Pseudomonas sp. (EN4). The larval mortality rate increased in a dose-dependent manner. Bacterial infection also significantly delayed the larval development, reduced adult emergence, and induced morphological deformities in adults of S. litura. Adverse effects were also detected on various nutritional parameters. The infected larvae showed a significant decrease in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food to biomass. Histopathological studies indicated damage to the midgut epithelial layer of larvae due to the consumption of bacteria treated diet. The infected larvae also showed a significantly decreased level of various digestive enzymes. Furthermore, exposure to Pseudomonas sp. also caused DNA damage in the hemocytes of S. litura larvae. CONCLUSION: Adverse effects of Pseudomonas sp. EN4 on various biological parameters of S. litura indicate that this soil bacterial strain may be used as an effective biocontrol agent against insect pests.


Assuntos
Inseticidas , Mariposas , Animais , Spodoptera , Pseudomonas , Larva , Inseticidas/farmacologia , Inseticidas/metabolismo , Bactérias
7.
Eur J Med Chem ; 250: 115230, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863227

RESUMO

In our quest to design and develop N/O-containing inhibitors of α-amylase, we have tried to synergize the inhibitory action of 1,4-naphthoquinone, imidazole and 1,2,3-triazole motifs by incorporating these structures into a single matrix. For this, a series of novel naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles is synthesized by a sequential approach involving [3 + 2] cycloaddition of 2-aryl-1-(prop-2-yn-1-yl)-1H-naphtho[2,3-d]imidazole-4,9-diones with substituted azides. The chemical structures of all the compounds are established with the help of 1D-NMR, 2D-NMR, IR, mass and X-ray studies. The developed molecular hybrids are screened for their inhibitory action on the α-amylase enzyme using the reference drug, acarbose. Different substituents present on the attached aryl part of the target compounds show amazing variations in inhibitory action against the α-amylase enzyme. Based on the type of substituents and their respective positions, it is observed that compounds containing -OCH3 and -NO2 groups show more inhibition potential than others. All the tested derivatives display α-amylase inhibitory activity with IC50 values in the range of 17.83 ± 0.14 to 26.00 ± 0.17 µg/mL. Compound 2-(2,3,4-trimethoxyphenyl)-1-{[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl]methyl}-1H-naphtho[2,3-d]imidazole-4,9-dione (10y) show maximum inhibition of amylase activity with IC50 value 17.83 ± 0.14 µg/mL as compared to reference drug acarbose (18.81 ± 0.05 µg/mL). A molecular docking study of the most active derivative (10y) is performed with A. oryzae α-amylase (PDB ID: 7TAA) and it unveils favourable binding interactions within the active site of the receptor molecule. The dynamic studies reveal that the receptor-ligand complex is stable as the RMSD of less than 2 is observed in 100 ns molecular dynamic simulation. Also, the designed derivatives are assayed for their DPPH free radical scavenging ability and all of them exhibit comparable radical scavenging activity with the standard, BHT. Further, to assess their drug-likeness properties, ADME properties are also evaluated and all of them demonstrate worthy in silico ADME results.


Assuntos
Acarbose , alfa-Amilases , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Raios X , Triazóis/química , Imidazóis/farmacologia , Radicais Livres , Estrutura Molecular
8.
Comput Biol Med ; 157: 106776, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947906

RESUMO

α-Amylase (EC.3.2.1.1) is a ubiquitous digestive endoamylase. The abrupt rise in blood glucose levels due to the hydrolysis of carbohydrates by α-amylase at a faster rate is one of the main reasons for type 2 diabetes. The inhibitors prevent the action of digestive enzymes, slowing the digestion of carbs and eventually assisting in the management of postprandial hyperglycemia. In the course of developing α-amylase inhibitors, we have screened 2-aryliminothiazolidin-4-one based analogs for their in vitro α-amylase inhibitory potential and employed various in silico approaches for the detailed exploration of the bioactivity. The DNSA bioassay revealed that compounds 5c, 5e, 5h, 5j, 5m, 5o and 5t were more potent than the reference drug (IC60 value = 22.94 ± 0.24 µg mL-1). The derivative 5o with -NO2 group at both the rings was the most potent analog with an IC60 value of 19.67 ± 0.20 µg mL-1 whereas derivative 5a with unsubstituted aromatic rings showed poor inhibitory potential with an IC60 value of 33.40 ± 0.15 µg mL-1. The reliable QSAR models were developed using the QSARINS software. The high value of R2ext = 0.9632 for model IM-9 showed that the built model can be applied to predict the α-amylase inhibitory activity of the untested molecules. A consensus modelling approach was also employed to test the reliability and robustness of the developed QSAR models. Molecular docking and molecular dynamics were employed to validate the bioassay results by studying the conformational changes and interaction mechanisms. A step further, these compounds also exhibited good ADMET characteristics and bioavailability when tested for in silico pharmacokinetics prediction parameters.


Assuntos
Diabetes Mellitus Tipo 2 , Simulação de Dinâmica Molecular , Humanos , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Colorimetria , Reprodutibilidade dos Testes , alfa-Amilases
9.
Top Curr Chem (Cham) ; 380(2): 14, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35149908

RESUMO

In the present era of the industrial revolution, we all are familiar with ever-increasing environmental pollution released from various chemical processes. Chemical production has had a severe impact on the environment and human health. For the betterment of our environment, the chemical community has turned their interest to developing green, harmless and sustainable synthetic processes. To accomplish these goals of green chemistry, the extraordinary properties of sonication play an important role. It is well known that sonochemistry can make decisive contributions to creating high pressures of almost 1000 atm and very high temperatures in the range of 4500-5000 °C. The implementation of ultrasound in chemical transformations somehow fulfils the measures of green chemistry, as it reduces energy consumption, enhances product selectivity, and uses lesser amounts of hazardous chemicals and solvents. Furthermore, heterocyclic synthesis under ultrasonication offers several environmental and process-related advantages compared with conventional methods. The remarkable contribution of ultrasonics to the development of green and sustainable synthetic routes inspired us to write this article. Herein, we have discussed only some of the various synthetic methodologies developed for the construction of heterocyclic cores under ultrasonic irradiation, accompanied by mechanistic insights. In some cases, a comparison between sonochemical conditions and conventional conditions has also been investigated. We emphasized principally 'up to date' developments on various sono-accelerated chemical transformations comprising aza-Michael, aldol reactions, C-C couplings, oxidation, cycloadditions, multi-component reactions, etc. for the synthesis of heterocycles.


Assuntos
Sonicação , Humanos , Oxirredução , Solventes
10.
J Biomol Struct Dyn ; 40(11): 4933-4953, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33357037

RESUMO

The present manuscript describes the synthesis, α-amylase inhibition, in silico studies and in-depth quantitative structure-activity relationship (QSAR) of a library of aroyl hydrazones based on benzothiazole skeleton. All the compounds of the developed library are characterized by various spectral techniques. α-Amylase inhibitory potential of all compounds has been explored, where compound 7n exhibits remarkable α-amylase inhibition of 87.5% at 50 µg/mL. Robust QSAR models are made by using the balance of correlation method in CORAL software. The chemical structures at different concentration with optimal descriptors are represented by SMILES. A data set of 66 SMILES of 22 hydrazones at three distinct concentrations are prepared. The significance of the index of ideality of correlation (IIC) with applicability domain (AD) is also studied at depth. A QSAR model with best Rvalidation2 = 0.8587 for split 1 is considered as a leading model. The outliers and promoters of increase and decrease of endpoint are also extracted. The binding modes of the most active compound, that is, 7n in the active site of Aspergillus oryzae α-amylase (PDB ID: 7TAA) are also explored by in silico molecular docking studies. Compound 7n displays high resemblance in binding mode and pose with the standard drug acarbose. Molecular dynamics simulations performed on protein-ligand complex for 100 ns, the protein gets stabilised after 20 ns and remained below 2 Å for the remaining simulation. Moreover, the deviation observed in RMSF during simulation for each amino acid residue with respect to Cα carbon atom is insignificant.


Assuntos
Hidrazonas , Relação Quantitativa Estrutura-Atividade , Hidrazonas/química , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
11.
Comput Biol Med ; 138: 104876, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598068

RESUMO

In an effort to explore a class of novel antidiabetic agents, we have made an effort to synergize the α-amylase inhibitory potential of 1,3-benzothiazole and 1,3,4-oxadiazole scaffolds by combining the two into a single structure via an ether linkage. The structure of synthesized benzothiazole clubbed oxadiazole derivatives are established by different spectral techniques. The synthesized hybrids are evaluated for their in vitro inhibitory potential against α-amylase. Compound 8f is found to be the most potent with a significant inhibition (87.5 ± 0.74% at 50 µg/mL, 82.27 ± 1.85% at 25 µg/mL and 79.94 ± 1.88% at 12.5 µg/mL) when compared to positive control acarbose (77.96 ± 2.06%, 71.17 ± 0.60%, 67.24 ± 1.16% at 50 µg/mL, 25 µg/mL and 12.5 µg/mL concentration). Molecular docking of the most potent enzyme inhibitor, 8f, shows promising interaction with the binding site of biological macromolecule Aspergillus oryzae α-amylase (PDB ID: 7TAA) and human pancreatic α-amylase (PDB ID: 3BAJ). To a step further, in-depth QSAR studies show a significant correlation between the experimental and the predicted inhibitory activities with the best Rvalidation2= 0.8701. The developed QSAR model can provide ample information about the structural features responsible for the increase and decrease of inhibitory activity. The mechanistic interpretation of the structure-activity relationship (SAR) is done with the help of combined computational calculations i.e. molecular docking and QSAR. Finally, molecular dynamic simulations are performed to get an insight into the binding mode of the most potent derivative with α-amylase from A. oryzae (PDB ID: 7TAA) and human pancreas (PDB ID: 3BAJ).


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Benzotiazóis , Humanos , Simulação de Acoplamento Molecular , Oxidiazóis/farmacologia , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
12.
J Biomol Struct Dyn ; 39(1): 91-107, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31838966

RESUMO

In search of potent α-amylase inhibitors, herein we report the synthesis, molecular docking and QSAR study of some thiazole clubbed pyrazole hybrids (TCPH) i.e., 1-((1-phenyl-3-aryl-1H-pyrazole-4-yl)methylene)-2-(4-arylthiazole-2-yl)hydrazine (4a-4r) as an α-amylase inhibitors. Among the different analogues, compounds 4g and 4h were found to be most potent at 50 µg/mL with 89.15% and 88.42% of inhibition. The Monte Carlo optimisation method was applied to build robust QSAR models for the prediction of percentage inhibition of TCPH at different concentration with various statistical parameters. The Simplified Molecular Input Line Entry System (SMILES) was applied to symbolise the molecular structure, descriptor calculation and model development. The role of the index of ideality correlation (IIC) was also studied which revealed a model for split 3 as a leading model with best R2 i.e., 0.9198. The compound 4l at different concentration (TCPH11, TCPH29 and TCPH47) was outside the applicability domain (AD) for the developed QSAR models for split 4 only. The SMILES attributes at three different concentrations were also detected. These attributes are the promoters of percentage increase/decrease in inhibition efficiency of the inhibitors. The docking simulation of most active compounds (4g and 4h) were performed within the active site of Aspergillus oryzae α-amylase (PDB ID: 7TAA) to analyse the binding conformation and interactions responsible for their activity. As a result, it was found that the binding interactions found between 4g, 4h and α-amylase were similar to those responsible for α-amylase inhibition by acarbose.Communicated by Ramaswamy H. Sarma.


Assuntos
Relação Quantitativa Estrutura-Atividade , Tiazóis , Simulação de Acoplamento Molecular , Pirazóis , alfa-Amilases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA