Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mod Pathol ; 33(3): 334-343, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31471587

RESUMO

FLT3-internal tandem duplication occurs in 20-30% of acute myeloid leukemia and confers an adverse prognosis with its allelic ratio being a key risk stratifier. The US Food and Drug Administration recently approved FLT3 inhibitors midostaurin and gilteritinib in FLT3 mutation-positive acute myeloid leukemia. Historically, FLT3 was tested by fragment analysis, which has become the standard method endorsed by international guidelines. However, next generation sequencing is increasingly used at acute myeloid leukemia diagnosis given its ability to simultaneously evaluate multiple clinically informative markers. As FLT3-internal tandem duplication detection was known to be challenging by next generation sequencing and the results carry profound prognostic and therapeutic implications, it is important to thoroughly examine its performance in FLT3-internal tandem duplication detection and allelic ratio classification. In a comparative study with fragment analysis, we retrospectively reviewed our experience using a custom-designed, hybridization capture-based, targeted next generation sequencing panel. Among 7902 cases, FLT3-internal tandem duplication was detected in 335 with variable sizes (3-231 bp) and insertion sites. Fragment analysis was also performed in 402 cases, demonstrating 100% concordance in FLT3-internal tandem duplication detection. In 136 dual-tested, positive cases, 128/136 (94%) exhibited concordant high/low allelic ratio classifications. The remaining 6% showed borderline low allelic ratio by next generation sequencing. The two methods were concordant in FLT3-tyrosine kinase domain mutation detection at the hotspot D835/I836 targeted by fragment analysis. Furthermore, seven mutations which may benefit from FLT3 inhibitor therapy were detected by next generation sequencing, in regions not covered by fragment analysis. Our study demonstrates that using a hybridization capture-based chemistry and optimized bioinformatics pipeline, next generation sequencing can reliably detect FLT3-internal tandem duplication and classify its allelic ratio for acute myeloid leukemia risk stratification. Next generation sequencing also exhibits superior comprehensiveness in FLT3 mutation detection and may further improve personalized, targeted therapy in acute myeloid leukemia.


Assuntos
Biomarcadores Tumorais/genética , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia Mieloide Aguda/genética , Mutação , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/genética , Biologia Computacional , Predisposição Genética para Doença , Humanos , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
Cancer Cell ; 33(1): 108-124.e5, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316425

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre. Using genetic fate mapping, we show SmoM2 expression in Cre-expressing endothelial progenitors results in myogenic transdifferentiation and RMS. We show that endothelium and skeletal muscle within the head and neck arise from Kdr-expressing progenitors, and that hedgehog pathway activation results in aberrant expression of myogenic specification factors as a potential mechanism driving RMS genesis. These findings suggest that RMS can originate from aberrant development of non-myogenic cells.


Assuntos
Endotélio/metabolismo , Proteínas Hedgehog/metabolismo , Desenvolvimento Muscular/genética , Rabdomiossarcoma/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular/fisiologia , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Transdução de Sinais
4.
Int J Cancer ; 139(3): 491-500, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874464

RESUMO

N-myc & STAT Interactor, NMI, is a protein that has mostly been studied for its physical interactions with transcription factors that play critical roles in tumor growth, progression and metastasis. NMI is an inducible protein, thus its intracellular levels and location can vary dramatically, influencing a diverse array of cellular functions in a context-dependent manner. The physical interactions of NMI with its binding partners have been linked to many aspects of tumor biology including DNA damage response, cell death, epithelial-to-mesenchymal transition and stemness. Thus, discovering more details about the function(s) of NMI could reveal key insights into how transcription factors like c-Myc, STATs and BRCA1 are contextually regulated. Although a normal, physiological function of NMI has not yet been discovered, it has potential roles in pathologies ranging from viral infection to cancer. This review provides a timely perspective of the unfolding roles of NMI with specific focus on cancer progression and metastasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Neoplasias/patologia , Ligação Proteica , Transdução de Sinais
6.
Mol Cancer ; 13: 200, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25174825

RESUMO

BACKGROUND: N-Myc Interactor is an inducible protein whose expression is compromised in advanced stage breast cancer. Downregulation of NMI, a gatekeeper of epithelial phenotype, in breast tumors promotes mesenchymal, invasive and metastatic phenotype of the cancer cells. Thus the mechanisms that regulate expression of NMI are of potential interest for understanding the etiology of breast tumor progression and metastasis. METHOD: Web based prediction algorithms were used to identify miRNAs that potentially target the NMI transcript. Luciferase reporter assays and western blot analysis were used to confirm the ability of miR-29 to target NMI. Quantitive-RT-PCRs were used to examine levels of miR29 and NMI from cell line and patient specimen derived RNA. The functional impact of miR-29 on EMT phenotype was evaluated using transwell migration as well as monitoring 3D matrigel growth morphology. Anti-miRs were used to examine effects of reducing miR-29 levels from cells. Western blots were used to examine changes in GSK3ß phosphorylation status. The impact on molecular attributes of EMT was evaluated using immunocytochemistry, qRT-PCRs as well as Western blot analyses. RESULTS: Invasive, mesenchymal-like breast cancer cell lines showed increased levels of miR-29. Introduction of miR-29 into breast cancer cells (with robust level of NMI) resulted in decreased NMI expression and increased invasion, whereas treatment of cells with high miR-29 and low NMI levels with miR-29 antagonists increased NMI expression and decreased invasion. Assessment of 2D and 3D growth morphologies revealed an EMT promoting effect of miR-29. Analysis of mRNA of NMI and miR-29 from patient derived breast cancer tumors showed a strong, inverse relationship between the expression of NMI and the miR-29. Our studies also revealed that in the absence of NMI, miR-29 expression is upregulated due to unrestricted Wnt/ß-catenin signaling resulting from inactivation of GSK3ß. CONCLUSION: Aberrant miR-29 expression may account for reduced NMI expression in breast tumors and mesenchymal phenotype of cancer cells that promotes invasive growth. Reduction in NMI levels has a feed-forward impact on miR-29 levels.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Algoritmos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Transição Epitelial-Mesenquimal , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Transdução de Sinais
7.
FEBS Lett ; 586(19): 3429-34, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22858377

RESUMO

The expression of Nuclear Protein 1 (NUPR1) is associated with chemoresistance in multiple malignancies. We previously reported that NUPR1 functions as a transcriptional cofactor for the p300-p53 complex and transcriptionally regulates p21 expression. In the present study we investigated the activity of NUPR1 in p53-deficient, triple-negative, inflammatory SUM159 breast cancer cells. Our studies reveal that NUPR1 confers growth benefit and chemoresistance by causing Akt-mediated phosphorylation and subsequent cytoplasmic re-localization of p21 and activation of the anti-apoptotic Bcl-xL protein. Our findings elucidate a NUPR1-PI-3-K/Akt-phospho-p21 axis that functions in p53-negative, inflammatory breast cancer cells to enhance chemoresistance in breast cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas de Neoplasias/metabolismo , Transporte Biológico Ativo , Linhagem Celular Tumoral , Citoplasma/metabolismo , Doxorrubicina/farmacologia , Feminino , Humanos , Proteínas Nucleares/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína bcl-X/metabolismo
8.
Int J Cancer ; 130(7): 1477-83, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21953410

RESUMO

Dickkopf1 (DKK1), a secreted inhibitor of the Wnt/ß-catenin pathway, is a negative regulator of bone formation. DKK1 acts as a switch that transitions prostate cancer bone metastases from osteolytic to osteoblastic and also is an active indicator of poor outcome for multiple myeloma. However, in other tumor types, DKK1 upregulation or overexpression suppresses tumor growth. Thus, the role of DKK1 in cancer appears to be diverse. This raises a question: Could the increased levels of DKK1 still be tumor protective when observed in high levels in the serum of patients? Here, we summarize the diverse, seemingly contradicting roles of DKK1 and attempt to explain the apparent dichotomy in its activity. We propose that DKK1 is a critical secreted factor that modulates microenvironment. Based on the location and components of the microenvironment DKK1 will support different outcomes.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Humanos , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA