Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 77(9): 4081-91, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564381

RESUMO

Nontypeable Haemophilus influenzae (NTHI) is an extremely common airway commensal which can cause opportunistic infections that are usually localized to airway mucosal surfaces. During many of these infections, NTHI forms biofilm communities that promote persistence in vivo. For many bacterial species, density-dependent quorum-signaling networks can affect biofilm formation and/or maturation. Mutation of luxS, a determinant of the autoinducer 2 (AI-2) quorum signal pathway, increases NTHI virulence in the chinchilla model for otitis media infections. For example, bacterial counts in middle-ear fluids and the severity of the host inflammatory response were increased in luxS mutants compared with parental strains. As these phenotypes are consistent with those that we have observed for biofilm-defective NTHI mutants, we hypothesized that luxS may affect NTHI biofilms. A luxS mutant was generated using the well-characterized NTHI 86-028NP strain and tested to determine the effects of the mutation on biofilm phenotypes in vitro and bacterial persistence and disease severity during experimental otitis media. Quantitation of the biofilm structure by confocal microscopy and COMSTAT analysis revealed significantly reduced biomass for NTHI 86-028NP luxS biofilms, which was restored by a soluble mediator in NTHI 86-028NP supernatants. Analysis of lipooligosaccharide moieties using an enzyme-linked immunosorbent assay and immunoblotting showed decreased levels of biofilm-associated glycoforms in the NTHI 86-028NP luxS strain. Infection studies showed that NTHI 86-028NP luxS had a significant persistence defect in vivo during chronic otitis media infection. Based on these data, we concluded that a luxS-dependent soluble mediator modulates the composition of the NTHI lipooligosaccharides, resulting in effects on biofilm maturation and bacterial persistence in vivo.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes , Liases de Carbono-Enxofre/fisiologia , Haemophilus influenzae/fisiologia , Lipopolissacarídeos/análise , Animais , Chinchila , Haemophilus influenzae/química , Homosserina/análogos & derivados , Homosserina/fisiologia , Lactonas , Otite Média/microbiologia , Fosforilcolina/análise , Sequências Repetitivas de Ácido Nucleico
2.
J Infect Dis ; 199(6): 786-94, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19434911

RESUMO

BACKGROUND: Streptococcus pneumoniae (pneumococcus) causes respiratory and systemic infections that are a major public health problem worldwide. It has been postulated that pneumococci persist in vivo in biofilm communities. METHODS: In this study, we analyzed whether pneumococci form biofilms in vivo, and if so, whether biofilms correlated with bacterial persistence. Chinchillas were infected with S. pneumoniae TIGR4 and euthanized at varying times after infection, after which the superior ear bullae were excised and examined by culture and microscopy. RESULTS: Dense material, resembling the biofilms of other otitis media pathogens, was visible in the middle ear as late as 12 days after infection. Scanning electron microscopy revealed bacteria within an electron-dense matrix, similar to pneumococcal biofilms formed in vitro. Viability staining revealed groups of viable diplococci, as well as viable and nonviable host cells, attached to a fibrous matrix that was positive when stained with propidium iodide. Cryosections of biofilms were treated with polyclonal antibodies against the pneumococcal surface components pneumococcal surface protein A family 2, pneumococcal surface protein C, choline-binding protein, and neuraminidase, coupled with appropriate secondary antibody conjugates. Immunofluorescent staining showed the presence of pneumococcal communities within the material recovered from the middle ear chamber. CONCLUSIONS: On the basis of these data, we conclude that pneumococci form biofilms in vivo and that this process may be intertwined with the formation of neutrophil extracellular traps. These findings provide new insights into the potential causes of antibiotic treatment failure and bacterial persistence in chronic pneumococcal otitis media.


Assuntos
Orelha Média/microbiologia , Pneumonia Pneumocócica/transmissão , Streptococcus pneumoniae/crescimento & desenvolvimento , Animais , Biofilmes , Sobrevivência Celular , Chinchila , Modelos Animais de Doenças , Orelha Média/patologia , Orelha Média/ultraestrutura , Microscopia Eletrônica de Varredura , Streptococcus pneumoniae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA