Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 194: 111177, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32569885

RESUMO

It has been recently recognized that controlled surface structuring on the nanometer scale is a successful strategy to endow different materials with antimicrobial properties. Despite many studies on bacterial interactions with nanostructured surfaces, a quantitative link between surface topography and bacterial adhesion is still missing. To quantitatively link cell adhesion data with topographical surface parameters, we performed single-cell spectroscopy on chemically identical surfaces with controlled nano-contact point density achieved by immobilization of gold nanoparticles (AuNP) on gold thin films. Such materials surfaces have previously shown antimicrobial (anti-adhesive) efficacy towards Gram-negative Escherichia coli cells. In the current study, the influence of nano-structured surfaces on the surface coverage and adhesion forces of clinically relevant Candida albicans (C. albicans), the fungus primarily associated with implant infections, was investigated to validate their antimicrobial potency against different microbial cells. The adhesion forces of C. albicans cells to nanostructured surfaces showed a decreasing trend with decreasing contact-point density and correlated well with the results of the respective C. albicans cell counts. The surfaces with the lowest contact-point density, 25 AuNP/µm², resulted in an average adhesion force of 5 nN, which was up to 5 times lower compared to control and 61 AuNP/µm² surfaces. Further, detailed analyses of force-distance curves revealed that the work of adhesion, and thus the energy required to remove the C. albicans cell from the surface is up to 10 times lower on 25 AuNP/µm² surfaces compared to unstructured surfaces. These findings show that a controlled tuning of nanostructured surfaces in terms of accessible nano-contact points is crucial to generate surface structures with enhanced antimicrobial properties. The gained knowledge can be further exploited for the design of biomaterials surfaces to prevent adhesion of some most commonly encountered pathogens.


Assuntos
Candida albicans , Nanopartículas Metálicas , Aderência Bacteriana , Adesão Celular , Ouro , Propriedades de Superfície
2.
Travel Med Infect Dis ; 28: 6-14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30056140

RESUMO

BACKGROUND: Civil air travel is increasingly recognized as an important potential source for the rapid spread of infectious diseases that were geographically confined in the past, creating international epidemics with great health and socio-economic impact. OBJECTIVE: The objective of this systematic review is to elucidate the correlations of materials surfaces (composition, structure, properties) and microbial dependences on them in aircraft. METHODS: The review was prepared according to PRISMA guidelines. Based on a systematic search for studies published before 30 June 2018 in English, we selected and reviewed the contamination, tenacity, and transmission of microorganisms related to specific surfaces within the aircraft cabin. We also reviewed the chemical composition and properties of these surface materials applied within aircraft. RESULTS: From a total of 828 records 15 articles were included for further analysis in this systematic review, indicating that the aircraft interior surfaces in seat areas (tray tables, armrests, seat covers) and lavatories (door knob handles, toilet flush buttons) are generally colonized by various types of potentially hazardous microorganisms. CONCLUSIONS: The interior surfaces in seat and lavatory areas could pose higher health risks by causing infections due to their relatively high microbial contamination compared with other interior surfaces. The classification, chemical composition, surface structures and physicochemical properties of materials surfaces have a varied effect on the adhesion, colonization, tenacity and potential transmission of microorganisms within the aircraft cabin. Strategies are proposed for the interruption of surface-related infection chains in the aircraft field.


Assuntos
Aeronaves , Controle de Infecções , Manufaturas/microbiologia , Microbiota/fisiologia , Saúde Pública , Humanos , Infecções/transmissão , Manufaturas/análise
3.
PLoS One ; 13(3): e0194339, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558480

RESUMO

Bactericidal materials gained interest in the health care sector as they are capable of preventing material surfaces from microbial colonization and subsequent spread of infections. However, commercialization of antimicrobial materials requires proof of their efficacy, which is usually done using in vitro methods. The ISO 22196 standard (Japanese test method JIS Z 2801) is a method for measuring the antibacterial activity of daily goods. As it was found reliable for testing the biocidal activity of antimicrobially active materials and surface coatings most of the laboratories participating in this study used this protocol. Therefore, a round robin test for evaluating antimicrobially active biomaterials had to be established. To our knowledge, this is the first report on inaugurating a round robin test for the ISO 22196 / JIS Z 2801. The first round of testing showed that analyses in the different laboratories yielded different results, especially for materials with intermediate antibacterial effects distinctly different efficacies were noted. Scrutinizing the protocols used by the different participants and identifying the factors influencing the test outcomes the approach was unified. Four critical factors influencing the outcome of antibacterial testing were identified in a series of experiments: (1) incubation time, (2) bacteria starting concentration, (3) physiological state of bacteria (stationary or exponential phase of growth), and (4) nutrient concentration. To our knowledge, this is the first time these parameters have been analyzed for their effect on the outcome of testing according to ISO 22196 / JIS Z 2801. In conclusion, to enable assessment of the results obtained it is necessary to evaluate these single parameters in the test protocol carefully. Furthermore, uniform and robust definitions of the terms antibacterial efficacy / activity, bacteriostatic effects, and bactericidal action need to be agreed upon to simplify communication of results and also regulate expectations regarding antimicrobial tests, outcomes, and materials.


Assuntos
Testes de Sensibilidade Microbiana/normas , Anti-Infecciosos/farmacologia , Análise Fatorial , Humanos , Testes de Sensibilidade Microbiana/métodos , Reprodutibilidade dos Testes
4.
Colloids Surf B Biointerfaces ; 163: 201-208, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29304434

RESUMO

Surface structures in the nanometer range emerge as the next evolutionary breakthrough in the design of biomaterials with antimicrobial properties. However, in order to advance the application of surface nanostructuring strategies in medical implants, the very nature of the microbial repealing mechanism has yet to be understood. Herein, we demonstrate that the random immobilization of gold nanoparticles (AuNPs) on a material's surface generates the possibility to explore microbial adhesion in dependence of contact point densities at the biointerface between the microbe, i.e., Escherichia coli and the material's surface. By optimizing the contact point density defined by individual AuNPs, yet keeping the surface chemistry unchanged as evidenced by X-ray photoelectron spectroscopy, we show that the initial microbial adhesion can be successfully reduced up to 50%, compared to control (unstructured) surfaces. Furthermore, we observed a decrease in the size of microbial cells adhered to nanostructured surfaces. The results show that the spatial distance between the contact points plays a crucial role in regulating microbial adhesion, thus advancing our understanding of the microbial adhesion mechanism on nanostructured surfaces. We suggest that the introduced strategy for nanostructuring materials surfaces opens a research direction for highly microbial-resistant biomaterials.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Tamanho da Partícula , Propriedades de Superfície
5.
Electrophoresis ; 39(2): 334-343, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28944503

RESUMO

Differential proteomics targeting the protein abundance is commonly used to follow changes in biological systems. Differences in localization and degree of post-translational modifications of proteins including phosphorylations are of tremendous interest due to the anticipated role in molecular regulatory processes. Because of their particular low abundance in prokaryotes, identification and quantification of protein phosphorylation is traditionally performed by either comparison of spot intensities on two-dimensional gels after differential phosphoprotein staining or gel-free by stable isotope labeling, sequential phosphopeptide enrichment and following LC-MS analysis. In the current work, we combined in a proof-of-principle experiment these techniques using 14 N/15 N metabolic labeling with succeeding protein separation on 2D gels. The visualization of phosphorylations on protein level by differential staining was followed by protein identification and determination of phosphorylation sites and quantification by LC-MS/MS. This approach should avoid disadvantages of traditional workflows, in particular the limited capability of peptide-based gel-free methods to quantify isoforms of proteins. Comparing control and stress conditions allowed for relative quantification in protein phosphorylation in Bacillus pumilus exposed to hydrogen peroxide. Altogether, we quantified with this method 19 putatively phosphorylated proteins.


Assuntos
Bacillus pumilus/metabolismo , Fosfoproteínas/análise , Proteoma/efeitos dos fármacos , Proteômica/métodos , Bacillus pumilus/química , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Peróxido de Hidrogênio/farmacologia , Marcação por Isótopo , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfoproteínas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA