Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
iScience ; 27(4): 109336, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500827

RESUMO

Temperature is thought to be a key factor influencing global species richness patterns. We investigate the link between temperature and diversification in the butterfly family Pieridae by combining next generation DNA sequences and published molecular data with fine-grained distribution data. We sampled nearly 600 pierid butterfly species to infer the most comprehensive molecular phylogeny of the family and curated a distribution dataset of more than 800,000 occurrences. We found strong evidence that species in environments with more stable daily temperatures or cooler maximum temperatures in the warm seasons have higher speciation rates. Furthermore, speciation and extinction rates decreased in tandem with global temperatures through geological time, resulting in a constant net diversification.

2.
Nat Ecol Evol ; 7(6): 903-913, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188966

RESUMO

Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.


Assuntos
Borboletas , Filogenia , Animais , Evolução Biológica , Borboletas/genética
3.
IBRO Neurosci Rep ; 11: 1-7, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34189496

RESUMO

DYT-TOR1A or DYT1 early-onset generalized dystonia is an inherited movement disorder characterized by sustained muscle contractions causing twisting, repetitive movements, or abnormal postures. The majority of the DYT1 dystonia patients have a trinucleotide GAG deletion in DYT1/TOR1A. Trihexyphenidyl (THP), an antagonist for excitatory muscarinic acetylcholine receptor M1, is commonly used to treat dystonia. Dyt1 heterozygous ΔGAG knock-in (KI) mice, which have the corresponding mutation, exhibit impaired motor-skill transfer. Here, the effect of THP injection during the treadmill training period on the motor-skill transfer to the accelerated rotarod performance was examined. THP treatment reversed the motor-skill transfer impairment in Dyt1 KI mice. Immunohistochemistry showed that Dyt1 KI mice had a significant reduction of the dorsolateral striatal cholinergic interneurons. In contrast, Western blot analysis showed no significant alteration in the expression levels of the striatal enzymes and transporters involved in the acetylcholine metabolism. The results suggest a functional alteration of the cholinergic system underlying the impairment of motor-skill transfer and the pathogenesis of DYT1 dystonia. Training with THP in a motor task may improve another motor skill performance in DYT1 dystonia.

4.
Behav Brain Res ; 411: 113381, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34038798

RESUMO

DYT1 dystonia is a movement disorder mainly caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), coding for torsinA. DYT1 dystonia patients show trends of decreased striatal ligand-binding activities to dopamine receptors 1 (D1R) and 2 (D2R). Dyt1 ΔGAG knock-in (KI) mice, which have the corresponding ΔGAG deletion, similarly exhibit reduced striatal D1R and D2R-binding activities and their expression levels. While the consequences of D2R reduction have been well characterized, relatively little is known about the effect of D1R reduction. Here, locomotor responses to D1R and D2R antagonists were examined in Dyt1 KI mice. Dyt1 KI mice showed significantly less responsiveness to both D1R antagonist SCH 23390 and D2R antagonist raclopride. The electrophysiological recording indicated that Dyt1 KI mice showed a significantly increased paired-pulse ratio of the striatal D1R-expressing medium spiny neurons and altered miniature excitatory postsynaptic currents. To analyze the in vivo torsinA function in the D1R-expressing neurons further, Dyt1 conditional knockout (Dyt1 d1KO) mice in these neurons were generated. Dyt1 d1KO mice had decreased spontaneous locomotor activity and reduced numbers of slips in the beam-walking test. Dyt1 d1KO male mice showed abnormal gait. Dyt1 d1KO mice showed defective striatal D1R maturation. Moreover, the mutant striatal D1R-expressing medium spiny neurons had increased capacitance, decreased sEPSC frequency, and reduced intrinsic excitability. The results suggest that torsinA in the D1R-expressing cells plays an important role in the electrophysiological function and motor performance. Medical interventions to the direct pathway may affect the onset and symptoms of this disorder.


Assuntos
Distonia Muscular Deformante/genética , Chaperonas Moleculares/genética , Receptores de Dopamina D1/metabolismo , Animais , Encéfalo/fisiologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Distonia/genética , Distonia/metabolismo , Distonia Muscular Deformante/metabolismo , Distonia Muscular Deformante/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Transtornos dos Movimentos/metabolismo , Neurônios/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores de Dopamina D1/genética
5.
Syst Biol ; 70(3): 413-420, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882028

RESUMO

Understanding the evolutionary mechanisms governing the uneven distribution of species richness across the tree of life is a great challenge in biology. Scientists have long argued that sexual conflict is a key driver of speciation. This hypothesis, however, has been highly debated in light of empirical evidence. Recent advances in the study of macroevolution make it possible to test this hypothesis with more data and increased accuracy. In the present study, we use phylogenomics combined with four different diversification rate analytical approaches to test whether sexual conflict is a driver of speciation in brush-footed butterflies of the tribe Acraeini. The presence of a sphragis, an external mating plug found in most species among Acraeini, was used as a proxy for sexual conflict. Diversification analyses statistically rejected the hypothesis that sexual conflict is associated with shifts in diversification rates in Acraeini. This result contrasts with earlier studies and suggests that the underlying mechanisms driving diversification are more complex than previously considered. In the case of butterflies, natural history traits acting in concert with abiotic factors possibly play a stronger role in triggering speciation than does sexual conflict. [Acraeini butterflies; arms race; exon capture phylogenomics; Lepidoptera macroevolution; sexual selection; sphragis.].


Assuntos
Borboletas , Animais , Evolução Biológica , Borboletas/genética , Especiação Genética , Fenótipo , Filogenia , Reprodução
6.
Neurobiol Dis ; 134: 104638, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31618684

RESUMO

DYT1 early-onset generalized torsion dystonia is a hereditary movement disorder characterized by abnormal postures and repeated movements. It is caused mainly by a heterozygous trinucleotide deletion in DYT1/TOR1A, coding for torsinA. The mutation may lead to a partial loss of torsinA function. Functional alterations of the basal ganglia circuits have been implicated in this disease. Striatal dopamine receptor 2 (D2R) levels are significantly decreased in DYT1 dystonia patients and in the animal models of DYT1 dystonia. D2R-expressing cells, such as the medium spiny neurons in the indirect pathway, striatal cholinergic interneurons, and dopaminergic neurons in the basal ganglia circuits, contribute to motor performance. However, the function of torsinA in these neurons and its contribution to the motor symptoms is not clear. Here, D2R-expressing-cell-specific Dyt1 conditional knockout (d2KO) mice were generated and in vivo effects of torsinA loss in the corresponding cells were examined. The Dyt1 d2KO mice showed significant reductions of striatal torsinA, acetylcholine metabolic enzymes, Tropomyosin receptor kinase A (TrkA), and cholinergic interneurons. The Dyt1 d2KO mice also showed significant reductions of striatal D2R dimers and tyrosine hydroxylase without significant alteration in striatal monoamine contents or the number of dopaminergic neurons in the substantia nigra. The Dyt1 d2KO male mice showed motor deficits in the accelerated rotarod and beam-walking tests without overt dystonic symptoms. Moreover, the Dyt1 d2KO male mice showed significant correlations between striatal monoamines and locomotion. The results suggest that torsinA in the D2R-expressing cells play a critical role in the development or survival of the striatal cholinergic interneurons, expression of striatal D2R mature form, and motor performance. Medical interventions to compensate for the loss of torsinA function in these neurons may affect the onset and symptoms of this disease.


Assuntos
Neurônios Colinérgicos/patologia , Distonia Muscular Deformante/metabolismo , Interneurônios/patologia , Chaperonas Moleculares/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/patologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Transtornos Motores/genética , Transtornos Motores/metabolismo
7.
Mol Phylogenet Evol ; 127: 600-605, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902572

RESUMO

The Neotropical moth-like butterflies (Hedylidae) are perhaps the most unusual butterfly family. In addition to being species-poor, this family is predominantly nocturnal and has anti-bat ultrasound hearing organs. Evolutionary relationships among the 36 described species are largely unexplored. A new, target capture, anchored hybrid enrichment probe set ('BUTTERFLY2.0') was developed to infer relationships of hedylids and some of their butterfly relatives. The probe set includes 13 genes that have historically been used in butterfly phylogenetics. Our dataset comprised of up to 10,898 aligned base pairs from 22 hedylid species and 19 outgroups. Eleven of the thirteen loci were successfully captured from all samples, and the remaining loci were captured from ≥94% of samples. The inferred phylogeny was consistent with recent molecular studies by placing Hedylidae sister to Hesperiidae, and the tree had robust support for 80% of nodes. Our results are also consistent with morphological studies, with Macrosoma tipulata as the sister species to all remaining hedylids, followed by M. semiermis sister to the remaining species in the genus. We tested the hypothesis that nocturnality evolved once from diurnality in Hedylidae, and demonstrate that the ancestral condition was likely diurnal, with a shift to nocturnality early in the diversification of this family. The BUTTERFLY2.0 probe set includes standard butterfly phylogenetics markers, captures sequences from decades-old museum specimens, and is a cost-effective technique to infer phylogenetic relationships of the butterfly tree of life.


Assuntos
Borboletas/classificação , Sondas de DNA/genética , Loci Gênicos , Mariposas/classificação , Filogenia , Animais , Sequência de Bases , Funções Verossimilhança , Mariposas/genética
8.
BMC Evol Biol ; 18(1): 101, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921227

RESUMO

BACKGROUND: Butterflies (Papilionoidea) are perhaps the most charismatic insect lineage, yet phylogenetic relationships among them remain incompletely studied and controversial. This is especially true for skippers (Hesperiidae), one of the most species-rich and poorly studied butterfly families. METHODS: To infer a robust phylogenomic hypothesis for Hesperiidae, we sequenced nearly 400 loci using Anchored Hybrid Enrichment and sampled all tribes and more than 120 genera of skippers. Molecular datasets were analyzed using maximum-likelihood, parsimony and coalescent multi-species phylogenetic methods. RESULTS: All analyses converged on a novel, robust phylogenetic hypothesis for skippers. Different optimality criteria and methodologies recovered almost identical phylogenetic trees with strong nodal support at nearly all nodes and all taxonomic levels. Our results support Coeliadinae as the sister group to the remaining skippers, the monotypic Euschemoninae as the sister group to all other subfamilies but Coeliadinae, and the monophyly of Eudaminae plus Pyrginae. Within Pyrginae, Celaenorrhinini and Tagiadini are sister groups, the Neotropical firetips, Pyrrhopygini, are sister to all other tribes but Celaenorrhinini and Tagiadini. Achlyodini is recovered as the sister group to Carcharodini, and Erynnini as sister group to Pyrgini. Within the grass skippers (Hesperiinae), there is strong support for the monophyly of Aeromachini plus remaining Hesperiinae. The giant skippers (Agathymus and Megathymus) once classified as a subfamily, are recovered as monophyletic with strong support, but are deeply nested within Hesperiinae. CONCLUSIONS: Anchored Hybrid Enrichment sequencing resulted in a large amount of data that built the foundation for a new, robust evolutionary tree of skippers. The newly inferred phylogenetic tree resolves long-standing systematic issues and changes our understanding of the skipper tree of life. These resultsenhance understanding of the evolution of one of the most species-rich butterfly families.


Assuntos
Borboletas/classificação , Genômica , Filogenia , Animais , Sequência de Bases , Borboletas/genética , Funções Verossimilhança , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA