Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 15(1): 5194, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890271

RESUMO

Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants' second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity.


Assuntos
Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/sangue , Plasmodium falciparum/imunologia , Masculino , Proteínas de Protozoários/imunologia , Animais , Adulto , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Interferon gama/metabolismo , Interferon gama/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Adulto Jovem , Linfócitos T CD8-Positivos/imunologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/imunologia , Anopheles/parasitologia
2.
J Infect Dis ; 229(6): 1883-1893, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38330357

RESUMO

BACKGROUND: Malaria is preventable yet causes >600 000 deaths annually. RTS,S, the first marketed malaria vaccine, has modest efficacy, but improvements are needed for eradication. METHODS: We conducted an open-label, dose escalation phase 1 study of a full-length recombinant circumsporozoite protein vaccine (rCSP) administered with adjuvant glucopyranosyl lipid A-liposome Quillaja saponaria 21 formulation (GLA-LSQ) on days 1, 29, and 85 or 1 and 490 to healthy, malaria-naive adults. The primary end points were safety and reactogenicity. The secondary end points were antibody responses and Plasmodium falciparum parasitemia after homologous controlled human malaria infection. RESULTS: Participants were enrolled into 4 groups receiving rCSP/GLA-LSQ: 10 µg × 3 (n = 20), 30 µg × 3 (n = 10), 60 µg × 3 (n = 10), or 60 µg × 2 (n = 9); 10 participants received 30 µg rCSP alone × 3, and there were 6 infectivity controls. Participants experienced no serious adverse events. Rates of solicited and unsolicited adverse events were similar among groups. All 26 participants who underwent controlled human malaria infection 28 days after final vaccinations developed malaria. Increasing vaccine doses induced higher immunoglobulin G titers but did not achieve previously established RTS,S benchmarks. CONCLUSIONS: rCSP/GLA-LSQ had favorable safety results. However, tested regimens did not induce protective immunity. Further investigation could assess whether adjuvant or schedule adjustments improve efficacy. CLINICAL TRIALS REGISTRATION: NCT03589794.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antiprotozoários , Lipídeo A , Lipossomos , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Humanos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Adulto , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Feminino , Masculino , Adjuvantes Imunológicos/administração & dosagem , Adulto Jovem , Lipídeo A/análogos & derivados , Lipídeo A/administração & dosagem , Lipídeo A/imunologia , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Quillaja/química , Adolescente , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Pessoa de Meia-Idade , Glucosídeos
3.
Ann Intern Med ; 177(3): 343-352, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408357

RESUMO

BACKGROUND: The ACTT risk profile, which was developed from ACTT-1 (Adaptive COVID-19 Treatment Trial-1), demonstrated that hospitalized patients with COVID-19 in the high-risk quartile (characterized by low absolute lymphocyte count [ALC], high absolute neutrophil count [ANC], and low platelet count at baseline) benefited most from treatment with the antiviral remdesivir. It is unknown which patient characteristics are associated with benefit from treatment with the immunomodulator baricitinib. OBJECTIVE: To apply the ACTT risk profile to the ACTT-2 cohort to investigate potential baricitinib-related treatment effects by risk quartile. DESIGN: Post hoc analysis of ACTT-2, a randomized, double-blind, placebo-controlled trial. (ClinicalTrials.gov: NCT04401579). SETTING: Sixty-seven trial sites in 8 countries. PARTICIPANTS: Adults hospitalized with COVID-19 (n = 999; 85% U.S. participants). INTERVENTION: Baricitinib+remdesivir versus placebo+remdesivir. MEASUREMENTS: Mortality, progression to invasive mechanical ventilation (IMV) or death, and recovery, all within 28 days; ALC, ANC, and platelet count trajectories. RESULTS: In the high-risk quartile, baricitinib+remdesivir was associated with reduced risk for death (hazard ratio [HR], 0.38 [95% CI, 0.16 to 0.86]; P = 0.020), decreased progression to IMV or death (HR, 0.57 [CI, 0.35 to 0.93]; P = 0.024), and improved recovery rate (HR, 1.53 [CI, 1.16 to 2.02]; P = 0.002) compared with placebo+remdesivir. After 5 days, participants receiving baricitinib+remdesivir had significantly larger increases in ALC and significantly larger decreases in ANC compared with control participants, with the largest effects observed in the high-risk quartile. LIMITATION: Secondary analysis of data collected before circulation of current SARS-CoV-2 variants. CONCLUSION: The ACTT risk profile identifies a subgroup of hospitalized patients who benefit most from baricitinib treatment and captures a patient phenotype of treatment response to an immunomodulator and an antiviral. Changes in ALC and ANC trajectory suggest a mechanism whereby an immunomodulator limits severe COVID-19. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.


Assuntos
Azetidinas , COVID-19 , Purinas , Pirazóis , Sulfonamidas , Adulto , Humanos , Antivirais/efeitos adversos , Tratamento Farmacológico da COVID-19 , Fatores Imunológicos , SARS-CoV-2 , Resultado do Tratamento , Método Duplo-Cego
4.
Malar J ; 22(1): 383, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115002

RESUMO

BACKGROUND: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR = 1-hazard ratio or VERR = 1-risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. METHODS: Power of VEmolFOI and VEC was compared to that of VEHR and VERR by simulations and analytic derivations, and the four VE methods were applied to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. RESULTS: In the trial of RTS,S vaccine, a significantly reduced number of clones at first infection was observed, but this was not the case in trials of PfSPZ Vaccine or primaquine, although the PfSPZ trial lacked power to show a reduction. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like those from RTS,S, but VEC is less powerful than VEHR for trials in which the number of clones at first infection is not reduced. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. CONCLUSIONS: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, these estimators are not recommended as primary endpoints for small trials unless supported by targeted data analysis. TRIAL REGISTRATIONS: NCT00866619, NCT02663700, NCT02143934.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária Falciparum , Malária , Adulto , Criança , Humanos , Lactente , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Genótipo , Malária/tratamento farmacológico , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/epidemiologia , Primaquina/uso terapêutico , Ensaios Clínicos como Assunto
5.
Res Sq ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790581

RESUMO

Background: Early phase malaria vaccine field trials typically measure malaria infection by PCR or thick blood smear microscopy performed on serially sampled blood. Vaccine efficacy (VE) is the proportion reduction in an endpoint due to vaccination and is often calculated as VEHR=1 - hazard ratio or VERR=1 - risk ratio. Genotyping information can distinguish different clones and distinguish multiple infections over time, potentially increasing statistical power. This paper investigates two alternative VE endpoints incorporating genotyping information: VEmolFOI, the vaccine-induced proportion reduction in incidence of new clones acquired over time, and VEC, the vaccine-induced proportion reduction in mean number of infecting clones per exposure. Methods: We used simulations and analytic derivations to compare power of these methods to VEHR and VERR and applied them to three data sets: a Phase 3 trial of RTS,S malaria vaccine in 6912 African infants, a Phase 2 trial of PfSPZ Vaccine in 80 Burkina Faso adults, and a trial comparing Plasmodium vivax incidence in 466 Papua New Guinean children after receiving chloroquine + artemether lumefantrine with or without primaquine (as these VE methods can also quantify effects of other prevention measures). By destroying hibernating liver-stage P. vivax, primaquine reduces subsequent reactivations after treatment completion. Results: The RTS,S vaccine significantly reduced the number of clones at first infection, but PfSPZ vaccine and primaquine did not. Resampling smaller data sets from the large RTS,S trial to simulate phase 2 trials showed modest power gains from VEC compared to VEHR for data like RTS,S, but VEC is less powerful than VEHR for vaccines which do not reduce the number of clones at first infection. VEmolFOI was most powerful in model-based simulations, but only the primaquine trial collected enough serial samples to precisely estimate VEmolFOI. The primaquine VEmolFOI estimate decreased after most control arm liver-stage infections reactivated (which mathematically resembles a waning vaccine), preventing VEmolFOI from improving power. Conclusions: The power gain from the genotyping methods depends on the context. Because input parameters for early phase power calculations are often uncertain, we recommend against these estimators as primary endpoints for small trials unless supported by targeted data analysis. Trial registrations: NCT00866619, NCT02663700, NCT02143934.

6.
PLoS Negl Trop Dis ; 17(3): e0011236, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996185

RESUMO

BACKGROUND: Recombinant Schistosoma mansoni Tetraspanin-2 formulated on Alhydrogel (Sm-TSP-2/Alhydrogel) is being developed to prevent intestinal and hepatic disease caused by S. mansoni. The tegumentary Sm-TSP-2 antigen was selected based on its unique recognition by cytophilic antibodies in putatively immune individuals living in areas of ongoing S. mansoni transmission in Brazil, and preclinical studies in which vaccination with Sm-TSP-2 protected mice following infection challenge. METHODS: A randomized, observer-blind, controlled, Phase 1b clinical trial was conducted in 60 healthy adults living in a region of Brazil with ongoing S. mansoni transmission. In each cohort of 20 participants, 16 were randomized to receive one of two formulations of Sm-TSP-2 vaccine (adjuvanted with Alhydrogel only, or with Alhydrogel plus the Toll-like receptor-4 agonist, AP 10-701), and 4 to receive Euvax B hepatitis B vaccine. Successively higher doses of antigen (10 µg, 30 µg, and 100 µg) were administered in a dose-escalation fashion, with progression to the next dose cohort being dependent upon evaluation of 7-day safety data after all participants in the preceding cohort had received their first dose of vaccine. Each participant received 3 intramuscular injections of study product at intervals of 2 months and was followed for 12 months after the third vaccination. IgG and IgG subclass antibody responses to Sm-TSP-2 were measured by qualified indirect ELISAs at pre- and post-vaccination time points through the final study visit. RESULTS: Sm-TSP-2/Alhydrogel administered with or without AP 10-701 was well-tolerated in this population. The most common solicited adverse events were mild injection site tenderness and pain, and mild headache. No vaccine-related serious adverse events or adverse events of special interest were observed. Groups administered Sm-TSP-2/Alhydrogel with AP 10-701 had higher post-vaccination levels of antigen-specific IgG antibody. A significant dose-response relationship was seen in those administered Sm-TSP-2/Alhydrogel with AP 10-701. Peak anti-Sm-TSP-2 IgG levels were observed approximately 2 weeks following the third dose, regardless of Sm-TSP-2 formulation. IgG levels fell to low levels by Day 478 in all groups except the 100 µg with AP 10-701 group, in which 57% of subjects (4 of 7) still had IgG levels that were ≥4-fold higher than baseline. IgG subclass levels mirrored those of total IgG, with IgG1 being the predominant subclass response. CONCLUSIONS: Vaccination of adults with Sm-TSP-2/Alhydrogel in an area of ongoing S. mansoni transmission was safe, minimally reactogenic, and elicited significant IgG and IgG subclass responses against the vaccine antigen. These promising results have led to initiation of a Phase 2 clinical trial of this vaccine in an endemic region of Uganda. TRIAL REGISTRATION: NCT03110757.


Assuntos
Esquistossomose mansoni , Animais , Humanos , Camundongos , Adjuvantes Imunológicos , Hidróxido de Alumínio , Brasil , Imunoglobulina G , Schistosoma mansoni , Vacinas Protozoárias
7.
Ann Intern Med ; 175(12): 1716-1727, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36442063

RESUMO

BACKGROUND: The COVID-19 standard of care (SOC) evolved rapidly during 2020 and 2021, but its cumulative effect over time is unclear. OBJECTIVE: To evaluate whether recovery and mortality improved as SOC evolved, using data from ACTT (Adaptive COVID-19 Treatment Trial). DESIGN: ACTT is a series of phase 3, randomized, double-blind, placebo-controlled trials that evaluated COVID-19 therapeutics from February 2020 through May 2021. ACTT-1 compared remdesivir plus SOC to placebo plus SOC, and in ACTT-2 and ACTT-3, remdesivir plus SOC was the control group. This post hoc analysis compared recovery and mortality between these comparable sequential cohorts of patients who received remdesivir plus SOC, adjusting for baseline characteristics with propensity score weighting. The analysis was repeated for participants in ACTT-3 and ACTT-4 who received remdesivir plus dexamethasone plus SOC. Trends in SOC that could explain outcome improvements were analyzed. (ClinicalTrials.gov: NCT04280705 [ACTT-1], NCT04401579 [ACTT-2], NCT04492475 [ACTT-3], and NCT04640168 [ACTT-4]). SETTING: 94 hospitals in 10 countries (86% U.S. participants). PARTICIPANTS: Adults hospitalized with COVID-19. INTERVENTION: SOC. MEASUREMENTS: 28-day mortality and recovery. RESULTS: Although outcomes were better in ACTT-2 than in ACTT-1, adjusted hazard ratios (HRs) were close to 1 (HR for recovery, 1.04 [95% CI, 0.92 to 1.17]; HR for mortality, 0.90 [CI, 0.56 to 1.40]). Comparable patients were less likely to be intubated in ACTT-2 than in ACTT-1 (odds ratio, 0.75 [CI, 0.53 to 0.97]), and hydroxychloroquine use decreased. Outcomes improved from ACTT-2 to ACTT-3 (HR for recovery, 1.43 [CI, 1.24 to 1.64]; HR for mortality, 0.45 [CI, 0.21 to 0.97]). Potential explanatory factors (SOC trends, case surges, and variant trends) were similar between ACTT-2 and ACTT-3, except for increased dexamethasone use (11% to 77%). Outcomes were similar in ACTT-3 and ACTT-4. Antibiotic use decreased gradually across all stages. LIMITATION: Unmeasured confounding. CONCLUSION: Changes in patient composition explained improved outcomes from ACTT-1 to ACTT-2 but not from ACTT-2 to ACTT-3, suggesting improved SOC. These results support excluding nonconcurrent controls from analysis of platform trials in rapidly changing therapeutic areas. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Adulto , Humanos , Antivirais/uso terapêutico , Ensaios Clínicos Fase III como Assunto , Dexametasona , Método Duplo-Cego , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
8.
EClinicalMedicine ; 52: 101579, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35928033

RESUMO

Background: Plasmodium falciparum (Pf) Sporozoite (SPZ) Chemoprophylaxis Vaccine (PfSPZ-CVac) involves concurrently administering infectious PfSPZ and malaria drug, often chloroquine (CQ), to kill liver-emerging parasites. PfSPZ-CVac (CQ) protected 100% of malaria-naïve participants against controlled human malaria infection. We investigated the hypothesis that PfSPZ-CVac (CQ) is safe and efficacious against seasonal, endemic Pf in malaria-exposed adults. Methods: Healthy 18-45 year olds were enrolled in a double-blind, placebo-controlled trial in Bougoula-Hameau, Mali, randomized 1:1 to 2.048 × 105 PfSPZ (PfSPZ Challenge) or normal saline administered by direct venous inoculation at 0, 4, 8 weeks. Syringes were prepared by pharmacy staff using online computer-based enrolment that randomized allocations. Clinical team and participant masking was assured by identical appearance of vaccine and placebo. Participants received chloroquine 600mg before first vaccination, 10 weekly 300mg doses during vaccination, then seven daily doses of artesunate 200mg before 24-week surveillance during the rainy season. Safety outcomes were solicited adverse events (AEs) and related unsolicited AEs within 12 days of injections, and all serious AEs. Pf infection was detected by thick blood smears performed every four weeks and during febrile illness over 48 weeks. Primary vaccine efficacy (VE) endpoint was time to infection at 24 weeks. NCT02996695. Findings: 62 participants were enrolled in April/May 2017. Proportions of participants experiencing at least one solicited systemic AE were similar between treatment arms: 6/31 (19.4%, 95%CI 9.2-36.3) of PfSPZ-CVac recipients versus 7/31 (22.6%, 95%CI 29.2-62.2) of controls (p value = 1.000). Two/31 (6%) in each group reported related, unsolicited AEs. One unrelated death occurred. Of 59 receiving 3 immunizations per protocol, fewer vaccinees (16/29, 55.2%) became infected than controls (22/30, 73.3%). VE was 33.6% by hazard ratio (p = 0.21, 95%CI -27·9, 65·5) and 24.8% by risk ratio (p = 0.10, 95%CI -4·8, 54·3). Antibody responses to PfCSP were poor; 28% of vaccinees sero-converted. Interpretation: PfSPZ-CVac (CQ) was well-tolerated. The tested dosing regimen failed to significantly protect against Pf infection in this very high transmission setting. Funding: U.S. National Institutes of Health, Sanaria. Registration number: ClinicalTrials.gov identifier (NCT number): NCT02996695.

9.
Sci Transl Med ; 14(659): eabn9709, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36001680

RESUMO

Genetically engineered live Plasmodium falciparum sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a P. falciparum (Pf) GAP with deletions in P52, P36, and SAP1 genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans. Here, we further assessed safety, tolerability, and immunogenicity of the PfGAP3KO vaccine and tested its efficacy against controlled human malaria infection (CHMI) in malaria-naïve subjects. The vaccine was delivered by three (n = 6) or five (n = 8) immunizations with ~200 PfGAP3KO-infected mosquito bites per immunization. PfGAP3KO was safe and well tolerated with no breakthrough P. falciparum blood stage infections. Vaccine-related adverse events were predominately localized urticaria related to the numerous mosquito bites administered per vaccination. CHMI via bites with mosquitoes carrying fully infectious Pf NF54 parasites was carried out 1 month after the last immunization. Half of the study participants who received either three or five PfGAP3KO immunizations remained P. falciparum blood stage negative, as shown by a lack of detection of Plasmodium 18S rRNA in the blood for 28 days after CHMI. Six protected study participants received a second CHMI 6 months later, and one remained completely protected. Thus, the PfGAP3KO vaccine was safe and immunogenic and was capable of inducing protection against sporozoite infection. These results warrant further evaluation of PfGAP3KO vaccine efficacy in dose-range finding trials with an injectable formulation.


Assuntos
Mordeduras e Picadas de Insetos , Vacinas Antimaláricas , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Mordeduras e Picadas de Insetos/induzido quimicamente , Malária/prevenção & controle , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/genética , Esporozoítos/genética , Vacinas Atenuadas
10.
Trials ; 23(1): 185, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236394

RESUMO

BACKGROUND: Arboviruses transmitted by Aedes aegypti including dengue, Zika, and chikungunya are a major global health problem, with over 2.5 billion at risk for dengue alone. There are no licensed antivirals for these infections, and safe and effective vaccines are not yet widely available. Thus, prevention of arbovirus transmission by vector modification is a novel approach being pursued by multiple researchers. However, the field needs high-quality evidence derived from randomized, controlled trials upon which to base the implementation and maintenance of vector control programs. Here, we report the EVITA Dengue trial design (DMID 17-0111), which assesses the efficacy in decreasing arbovirus transmission of an innovative approach developed by the World Mosquito Program for vector modification of Aedes mosquitoes by Wolbachia pipientis. METHODS: DMID 17-0111 is a cluster-randomized trial in Belo Horizonte, Brazil, with clusters defined by primary school catchment areas. Clusters (n = 58) will be randomized 1:1 to intervention (release of Wolbachia-infected Aedes aegypti mosquitoes) vs. control (no release). Standard vector control activities (i.e., insecticides and education campaigns for reduction of mosquito breeding sites) will continue as per current practice in the municipality. Participants (n = 3480, 60 per cluster) are children aged 6-11 years enrolled in the cluster-defining school and living within the cluster boundaries who will undergo annual serologic surveillance for arboviral infection. The primary objective is to compare sero-incidence of arboviral infection between arms. DISCUSSION: DMID 17-0111 aims to determine the efficacy of Wolbachia-infected mosquito releases in reducing human infections by arboviruses transmitted by Aedes aegypti and will complement the mounting evidence for this method from large-scale field releases and ongoing trials. The trial also represents a critical step towards robustness and rigor for how vector control methods are assessed, including the simultaneous measurement and correlation of entomologic and epidemiologic outcomes. Data from this trial will inform further the development of novel vector control methods. TRIAL REGISTRATION: ClinicalTrials.gov NCT04514107 . Registered on 17 August 2020 Primary sponsor: National Institute of Health, National Institute of Allergy and Infectious Diseases.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Brasil/epidemiologia , Criança , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , Incidência , Mosquitos Vetores , Infecção por Zika virus/epidemiologia
11.
Infect Dis Ther ; 11(2): 841-852, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35184256

RESUMO

INTRODUCTION: There is an urgent need to develop new drugs to treat malaria due to increasing resistance to first-line therapeutics targeting the causative organism, Plasmodium falciparum (P. falciparum). One drug candidate is DM1157, a small molecule that inhibits the formation of hemozoin, which protects P. falciparum from heme toxicity. We describe a first-in-human, phase 1 trial of DM1157 in healthy adult volunteers that was halted early because of significant toxicity. METHODS: Adverse events were summarized using descriptive statistics. We used pharmacokinetic modeling to quantitatively assess whether the DM1157 exposure needed for P. falciparum inhibition was achievable at safe doses. RESULTS: We found that there was no dose where both the safety and efficacy target were simultaneously achieved; conversely, the model predicted that 27 mg was the highest dosage at which patients would consistently maintain safe exposure with multiple dosing. By pre-defining dose escalation stopping rules and conducting an interim pharmacokinetic/pharmacodynamic analysis, we determined that the study would be unable to safely achieve a dosage needed to observe an anti-malarial effect, thereby providing strong rationale to halt the study. CONCLUSION: This study provides an important example of the risks and challenges of conducting early phase research as well as the role of modeling and simulation to optimize participant safety (ClinicalTrials.gov, NCT03490162).

12.
Antimicrob Agents Chemother ; 66(1): e0143221, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606333

RESUMO

Oxfendazole is a potent veterinary antiparasitic drug undergoing development for human use to treat multiple parasitic infections. Results from two recently completed phase I clinical trials conducted in healthy adults showed that the pharmacokinetics of oxfendazole is nonlinear, affected by food, and, after the administration of repeated doses, appeared to mildly affect hemoglobin concentrations. To facilitate oxfendazole dose optimization for its use in patient populations, the relationship among oxfendazole dose, pharmacokinetics, and hemoglobin concentration was quantitatively characterized using population pharmacokinetic-pharmacodynamic modeling. In fasting subjects, oxfendazole pharmacokinetics was well described by a one-compartment model with first-order absorption and elimination. The change in oxfendazole pharmacokinetics when administered following a fatty meal was captured by an absorption model with one transit compartment and increased bioavailability. The effect of oxfendazole exposure on hemoglobin concentration in healthy adults was characterized by a life span indirect response model in which oxfendazole has positive but minor inhibitory effect on red blood cell synthesis. Further simulation indicated that oxfendazole has a low risk of posing a safety concern regarding hemoglobin concentration, even at a high oxfendazole dose of 60 mg/kg of body weight once daily. The final model was further used to perform comprehensive target attainment simulations for whipworm infection and filariasis at various dose regimens and target attainment criteria. The results of our modeling work, when adopted appropriately, have the potential to greatly facilitate oxfendazole dose regimen optimization in patient populations with different types of parasitic infections.


Assuntos
Benzimidazóis , Adulto , Benzimidazóis/farmacocinética , Disponibilidade Biológica , Peso Corporal , Simulação por Computador , Relação Dose-Resposta a Droga , Humanos
13.
PLoS Pathog ; 17(5): e1009594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048504

RESUMO

PfSPZ-CVac combines 'PfSPZ Challenge', which consists of infectious Plasmodium falciparum sporozoites (PfSPZ), with concurrent antimalarial chemoprophylaxis. In a previously-published PfSPZ-CVac study, three doses of 5.12x104 PfSPZ-CVac given 28 days apart had 100% vaccine efficacy (VE) against controlled human malaria infection (CHMI) 10 weeks after the last immunization, while the same dose given as three injections five days apart had 63% VE. Here, we conducted a dose escalation trial of similarly condensed schedules. Of the groups proceeding to CHMI, the first study group received three direct venous inoculations (DVIs) of a dose of 5.12x104 PfSPZ-CVac seven days apart and the next full dose group received three DVIs of a higher dose of 1.024x105 PfSPZ-CVac five days apart. CHMI (3.2x103 PfSPZ Challenge) was performed by DVI 10 weeks after the last vaccination. In both CHMI groups, transient parasitemia occurred starting seven days after each vaccination. For the seven-day interval group, the second and third vaccinations were therefore administered coincident with parasitemia from the prior vaccination. Parasitemia was associated with systemic symptoms which were severe in 25% of subjects. VE in the seven-day group was 0% (7/7 infected) and in the higher-dose, five-day group was 75% (2/8 infected). Thus, the same dose of PfSPZ-CVac previously associated with 63% VE when given on a five-day schedule in the prior study had zero VE here when given on a seven-day schedule, while a double dose given on a five-day schedule here achieved 75% VE. The relative contributions of the five-day schedule and/or the higher dose to improved VE warrant further investigation. It is notable that administration of PfSPZ-CVac on a schedule where vaccine administration coincided with blood-stage parasitemia was associated with an absence of sterile protective immunity. Clinical trials registration: NCT02773979.


Assuntos
Antimaláricos/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinação , Adulto , Eritrócitos/imunologia , Feminino , Humanos , Imunogenicidade da Vacina , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Parasitemia , Esporozoítos , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-33526484

RESUMO

Oxfendazole is a potent veterinary benzimidazole anthelmintic under transition to humans for the treatment of multiple parasitic infectious diseases. The first-in-human study evaluating the disposition of oxfendazole and its metabolites in healthy adults following single ascending oral doses from 0.5 to 60 mg/kg of body weight shows that oxfendazole pharmacokinetics is substantially nonlinear, which complicates correlating oxfendazole dose to exposure. To quantitatively capture the relation between oxfendazole dose and exposure, a population pharmacokinetic model for oxfendazole and its metabolites, oxfendazole sulfone and fenbendazole, in humans was developed using a nonlinear mixed-effect modeling approach. Our final model incorporated mechanistic characterization of dose-limited bioavailability as well as different oxfendazole metabolic processes and provided insight into the significance of presystemic metabolism in oxfendazole and metabolite disposition. Oxfendazole clinical pharmacokinetics was best described by a one-compartment model with nonlinear absorption and linear elimination. Oxfendazole apparent clearance and apparent volume of distribution were estimated to be 2.57 liters/h and 35.2 liters, respectively, at the lowest dose (0.5 mg/kg), indicating that oxfendazole is a low extraction drug with moderate distribution. The disposition of both metabolites was adequately characterized by a one-compartment model with formation rate-limited elimination. Fenbendazole formation from oxfendazole was primarily through systemic metabolism, while both presystemic and systemic metabolism were critical to the formation of oxfendazole sulfone. Our model adequately captured the concentration-time profiles of both oxfendazole and its two metabolites in healthy adults over a wide dose range. The model can be used to predict oxfendazole disposition under new dosing regimens to support dose optimization in humans.


Assuntos
Anti-Helmínticos , Benzimidazóis , Administração Oral , Adulto , Fenbendazol , Humanos , Taxa de Depuração Metabólica
15.
Vaccine ; 39(8): 1195-1200, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33494963

RESUMO

Plasmodium falciparum circumsporozoite protein (CSP) is a major sporozoite surface protein and a key target of pre-erythrocytic malaria subunit vaccines. A full-length recombinant CSP (rCSP) based strategy could be advantageous, as this antigen includes a region critical to sporozoite cell attachment and hepatocyte invasion. The adjuvant Glucopyranosyl Lipid A-liposome Quillaja saponaria 21 (GLA-LSQ) functions as a TLR4 agonist, promotes antigen-specific TH1 responses and stimulates cytotoxic T cell production. To date, one study has reported the clinical acceptability of GLA-LSQ. We present interim results of a phase 1 first-in-human dose-escalation clinical trial of full-length rCSP vaccine given with or without GLA-LSQ adjuvant. Participants experienced only mild to moderate related solicited adverse events. The lowest adjuvanted vaccine dose achieved >90-fold rise in geometric mean anti-CSP IgG antibody titer. These favorable safety and immunogenicity results confirm the immunostimulatory capacity of this relatively new adjuvant and support next steps in clinical product development. Trial registration: ClinicalTrials.gov Identifier NCT03589794 (registered 18 July 2018).


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Animais , Anticorpos Antiprotozoários , Formação de Anticorpos , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Proteínas de Protozoários , Vacinas Sintéticas
16.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816721

RESUMO

Neurocysticercosis and trichuriasis are difficult-to-treat parasitic infections that affect more than 1.5 billion people worldwide. Oxfendazole, a potent broad-spectrum benzimidazole anthelmintic approved for use in veterinary medicine, has shown substantial antiparasitic activity against neurocysticercosis and intestinal helminths in preclinical studies. As part of a program to transition oxfendazole from veterinary medicine to human use, phase I multiple ascending dose and food effect studies were conducted. Thirty-six healthy adults were enrolled in an open-label study which evaluated (i) the pharmacokinetics and safety of oxfendazole following multiple ascending doses of oxfendazole oral suspension at 3, 7.5, and 15 mg/kg once daily for 5 days and (ii) the effect of food on oxfendazole pharmacokinetics and safety after a single 3-mg/kg dose administered following an overnight fast or the consumption of a fatty breakfast. Following multiple oral dose administration, the intestinal absorption of oxfendazole was rapid, with the time to maximum concentration of drug in serum (Tmax) ranging from 1.92 to 2.56 h. A similar half-life of oxfendazole (9.21 to 11.8 h) was observed across all dose groups evaluated, and oxfendazole exhibited significantly less than a dose-proportional increase in exposure. Oxfendazole plasma exposures were higher in female subjects than in male subjects. Following daily administration, oxfendazole reached a steady state in plasma on study day 3, with minimal accumulation. Food delayed the oxfendazole Tmax by a median of 6.88 h and resulted in a 49.2% increase in the maximum observed drug concentration in plasma (Cmax) and an 86.4% increase in the area under the concentration-time curve (AUC). Oxfendazole was well tolerated in all study groups, and there were no major safety signals identified in this study. (This study has been registered at ClinicalTrials.gov under identifier NCT03035760.).


Assuntos
Benzimidazóis , Administração Oral , Adulto , Área Sob a Curva , Benzimidazóis/efeitos adversos , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Meia-Vida , Humanos , Masculino
17.
J Infect Dis ; 220(12): 1962-1966, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31419294

RESUMO

Direct venous inoculation of 3.2 × 103 aseptic, purified, cryopreserved, vialed Plasmodium falciparum (Pf) strain NF54 sporozoites, PfSPZ Challenge (NF54), has been used for controlled human malaria infection (CHMI) in the United States, 4 European countries, and 6 African countries. In nonimmune adults, this results in 100% infection rates. We conducted a double-blind, randomized, dose-escalation study to assess the infectivity of the 7G8 clone of Pf (PfSPZ Challenge [7G8]). Results showed dose-dependent infectivity from 43% for 8 × 102 PfSPZ to 100% for 4.8 × 103 PfSPZ. PfSPZ Challenge (7G8) will allow for more complete assessment by CHMI of antimalarial vaccines and drugs.


Assuntos
Relação Dose-Resposta Imunológica , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Administração Intravenosa , Adulto , Feminino , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/imunologia , Masculino , Vacinação
18.
Artigo em Inglês | MEDLINE | ID: mdl-31285228

RESUMO

Filociclovir (MBX-400, cyclopropavir) is an antiviral agent with activity against cytomegalovirus (CMV). A phase 1, double-blind, randomized, placebo-controlled (3:1 ratio), single-center, multiple-ascending-dose trial was conducted to assess the safety, tolerability, and pharmacokinetics of filociclovir. Filociclovir (n = 18) or placebo (n = 6) was administered as a daily oral dose (100 mg, 350 mg, or 750 mg) for 7 days to normal healthy adults (ages, 25 to 65 years) who were monitored for 22 days. Safety assessments included clinical, laboratory, and electrocardiogram monitoring. Plasma and urine samplings were used to determine pharmacokinetic parameters. All study product-related adverse events were mild, most commonly gastrointestinal (17%), nervous system (11%), and skin and subcutaneous tissue (11%) disorders. One subject had reversible grade 3 elevation in serum creatinine and bilirubin, which was associated with an ∼1-log increase in plasma filociclovir exposure compared to levels for other subjects in the same (750-mg) cohort. No other serious adverse events were observed. Plasma exposures (area under the concentration-time curve from 0 to 24 h [AUC0-24]) on days 1 and 7 were similar, suggesting negligible dose accumulation. There was a sublinear increase in plasma exposure with dose, which plateaued at the daily dose of 350 mg. The amount of filociclovir recovered in the urine remained proportional to plasma exposure (AUC). Doses as low as 100 mg achieved plasma concentrations sufficient to inhibit CMV in vitro (This study has been registered at ClinicalTrials.gov under identifier NCT02454699.).


Assuntos
Antivirais/efeitos adversos , Antivirais/farmacocinética , Citomegalovirus/efeitos dos fármacos , Adulto , Idoso , Antivirais/sangue , Antivirais/uso terapêutico , Citomegalovirus/patogenicidade , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Meia-Vida , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
19.
Langmuir ; 33(33): 8140-8146, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28745890

RESUMO

Though surface modifications of organic thin films dramatically improve optoelectronic device performance, chemistry at organic surfaces presents new challenges that are not seen in conventional inorganic surfaces. This work demonstrates that the subsurface of pentacene remains highly accessible, even to large adsorbates, and that three distinct reaction regimes (surface, subsurface, and bulk) are accessed within the narrow thermal range of 30-75 °C. Progression of this transition is quantitatively measured via polarization modulation infrared reflection absorption spectroscopy, and atomic force microscopy is used to measure the thin-film morphology. Together, they reveal the close relationship between the extent of the reaction and the morphology changes. Finally, the reaction kinetics of the pentacene thin film is measured with a series of adsorbates that have different reactivity and diffusivity in the thin film. The results suggest that reaction kinetics in the thin film is controlled by both the reactivity and the adsorbate diffusivity in the thin-film lattice, which is very different than the traditional solution kinetics that is dominated by the chemical activation barriers. Combined, these experiments guide efforts toward rationally functionalizing the surfaces of organic semiconductors to enable the next generation of flexible devices.

20.
Chembiochem ; 18(8): 726-738, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28176426

RESUMO

Nitroxyl (HNO), a reduced form of the important gasotransmitter nitric oxide, exhibits its own unique biological activity. A possible biological pathway of HNO formation is the S-thiolation reaction between thiols and S-nitrosothiols (RSNOs). Our density functional theory (DFT) calculations suggested that S-thiolation proceeds through a proton transfer from the thiol to the RSNO nitrogen atom, which increases electrophilicity of the RSNO sulfur, followed by nucleophilic attack by thiol, yielding a charge-separated zwitterionic intermediate structure RSS+ (R)N(H)O- (Zi), which decomposes to yield HNO and disulfide RSSR. In the gas phase, the proton transfer and the S-S bond formation are asynchronous, resulting in a high activation barrier (>40 kcal mol-1 ), making the reaction infeasible. However, the barrier can decrease below the S-N bond dissociation energy in RSNOs (≈30 kcal mol-1 ) upon transition into an aqueous environment that stabilizes Zi and provides a proton shuttle to synchronize the proton transfer and the S-S bond formation. These mechanistic features suggest that S-thiolation can easily lend itself to enzymatic catalysis and thus can be a possible route of endogenous HNO production.


Assuntos
Hidrogênio/química , Óxidos de Nitrogênio/síntese química , Compostos Nitrosos/química , Compostos de Sulfidrila/química , Catálise , Modelos Químicos , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA