Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Cell Mol Life Sci ; 81(1): 297, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992309

RESUMO

Muse cells, identified as cells positive for the pluripotent surface marker SSEA-3, are pluripotent-like endogenous stem cells located in the bone marrow (BM), peripheral blood, and organ connective tissues. The detailed characteristics of SSEA-3(+) cells in extraembryonic tissue, however, are unknown. Here, we demonstrated that similar to human-adult tissue-Muse cells collected from the BM, adipose tissue, and dermis as SSEA-3(+), human-umbilical cord (UC)-SSEA-3(+) cells express pluripotency markers, differentiate into triploblastic-lineage cells at a single cell level, migrate to damaged tissue, and exhibit low telomerase activity and non-tumorigenicity. Notably, ~ 20% of human-UC-SSEA-3(+) cells were negative for X-inactive specific transcript (XIST), a naïve pluripotent stem cell characteristic, whereas all human adult tissue-Muse cells are XIST-positive. Single-cell RNA sequencing revealed that the gene expression profile of human-UC-SSEA-3(+) cells was more similar to that of human post-implantation blastocysts than human-adult tissue-Muse cells. The DNA methylation level showed the same trend, and notably, the methylation levels in genes particularly related to differentiation were lower in human-UC-SSEA-3(+) cells than in human-adult tissue-Muse cells. Furthermore, human-UC-SSEA-3(+) cells newly express markers specific to extraembryonic-, germline-, and hematopoietic-lineages after differentiation induction in vitro whereas human-adult tissue-Muse cells respond only partially to the induction. Among various stem/progenitor cells in living bodies, those that exhibit properties similar to post-implantation blastocysts in a naïve state have not yet been found in humans. Easily accessible human-UC-SSEA-3(+) cells may be a valuable tool for studying early-stage human development and human reproductive medicine.


Assuntos
Blastocisto , Diferenciação Celular , Antígenos Embrionários Estágio-Específicos , Cordão Umbilical , Humanos , Antígenos Embrionários Estágio-Específicos/metabolismo , Cordão Umbilical/citologia , Blastocisto/citologia , Blastocisto/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Análise de Célula Única , Telomerase/metabolismo , Telomerase/genética , Feminino
2.
Stroke Vasc Neurol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906547

RESUMO

BACKGROUND: The current method for generating an animal model of spinal cord (SC) infarction is highly invasive and permits only short-term observation, typically limited to 28 days. OBJECTIVE: We aimed to establish a rat model characterised by long-term survival and enduring SC dysfunction by inducing selective ischaemic SC damage. METHODS: In 8-week-old male Wistar rats, a convection-enhanced delivery technique was applied to selectively deliver endothelin-1 (ET-1) to the anterior horn of the SC at the Th13 level, leading to SC infarction. The Basso, Beattie and Bresnahan (BBB) locomotor score was assessed for 56 days. The SC was examined by a laser tissue blood flowmeter, MRI, immunohistochemistry, triphenyl tetrazolium chloride (TTC) staining, Western blots and TUNEL staining. RESULTS: The puncture method was used to bilaterally inject 0.7 µL ET-1 (2.5 mg/mL) from the lateral SC into the anterior horns (40° angle, 1.5 mm depth) near the posterior root origin. Animals survived until day 56 and the BBB score was stably maintained (5.5±1.0 at day 14 and 6.2±1.0 at day 56). Rats with BBB scores ≤1 on day 1 showed stable scores of 5-6 after day 14 until day 56 while rats with BBB scores >1 on day 1 exhibited only minor dysfunction with BBB scores >12 after day 14. TTC staining, immunostaining and TUNEL staining revealed selective ischaemia and neuronal cell death in the anterior horn. T2-weighted MR images showed increasing signal intensity at the SC infarction site over time. Western blots revealed apoptosis and subsequent inflammation in SC tissue after ET-1 administration. CONCLUSIONS: Selective delivery of ET-1 into the SC allows for more precise localisation of the infarcted area at the targeted site and generates a rat SC infarction model with stable neurological dysfunction lasting 56 days.

3.
Stem Cell Res Ther ; 15(1): 147, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773627

RESUMO

BACKGROUND: Bleomycin (BLM)-induced lung injury is characterized by mixed histopathologic changes with inflammation and fibrosis, such as observed in human patients with bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. Although no curative therapies for these lung diseases exist, stem cell therapy has emerged as a potential therapeutic option. Multilineage-differentiating stress-enduring (Muse) cells are endogenous pluripotent- and macrophage-like stem cells distributed in various adult and fetal tissues as stage-specific embryonic antigen-3-positive cells. They selectively home to damaged tissue by sensing sphingosine-1-phosphate and replace the damaged/apoptotic cells by in vivo differentiation. Clinical trials for some human diseases suggest the safety and therapeutic efficacy of intravenously injected human leukocyte antigen-mismatched allogenic Muse cells from adult bone marrow (BM) without immunosuppressant. Here, we evaluated the therapeutic effects of human Muse cells from preterm and term umbilical cord (UC), and adult BM in a rat BLM-induced lung injury model. METHODS: Rats were endotracheally administered BLM to induce lung injury on day 0. On day 3, human preterm UC-Muse, term UC-Muse, or adult BM-Muse cells were administered intravenously without immunosuppressants, and rats were subjected to histopathologic analysis on day 21. Body weight, serum surfactant protein D (SP-D) levels, and oxygen saturation (SpO2) were monitored. Histopathologic lung injury scoring by the Ashcroft and modified American Thoracic Society document scales, quantitative characterization of engrafted Muse cells, RNA sequencing analysis, and in vitro migration assay of infused Muse cells were performed. RESULTS: Rats administered preterm- and term-UC-Muse cells exhibited a significantly better recovery based on weight loss, serum SP-D levels, SpO2, and histopathologic lung injury scores, and a significantly higher rate of both Muse cell homing to the lung and alveolar marker expression (podoplanin and prosurfactant protein-C) than rats administered BM-Muse cells. Rats receiving preterm-UC-Muse cells showed statistically superior results to those receiving term-UC-Muse cells in many of the measures. These findings are thought to be due to higher expression of genes related to cell migration, lung differentiation, and cell adhesion. CONCLUSION: Preterm UC-Muse cells deliver more efficient therapeutic effects than term UC- and BM-Muse cells for treating BLM-induced lung injury in a rat model.


Assuntos
Bleomicina , Modelos Animais de Doenças , Lesão Pulmonar , Cordão Umbilical , Animais , Humanos , Ratos , Lesão Pulmonar/terapia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Cordão Umbilical/citologia , Ratos Sprague-Dawley , Masculino , Diferenciação Celular , Feminino
4.
Stem Cells Transl Med ; 13(6): 532-545, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38560897

RESUMO

The strength of stem cell therapy is the regeneration of tissues by synergistic pleiotropic effects. Among many stem cell types, mesenchymal stem cells (MSCs) that are comprised of heterogenous population are widely used for clinical applications with the expectation of pleiotropic bystander effects. Muse cells are pluripotent-like/macrophage-like stem cells distributed in the bone marrow, peripheral blood, and organ connective tissues as cells positive for the pluripotent surface marker stage-specific-embryonic antigen -3. Muse cells comprise ~1% to several percent of MSCs. While Muse cells and MSCs share several characteristics, such as mesenchymal surface marker expression and their bystander effects, Muse cells exhibit unique characteristics not observed in MSCs. These unique characteristics of Muse cells include selective homing to damaged tissue after intravenous injection rather than being trapped in the lung like MSCs, replacement of a wide range of damaged/apoptotic cells by differentiation through phagocytosis, and long-lasting immunotolerance for donor cell use. In this review, we focus on the basic properties of Muse cells clarified through preclinical studies and clinical trials conducted by intravenous injection of donor-Muse cells without HLA-matching tests or immunosuppressant treatment. MSCs are considered to differentiate into osteogenic, chondrogenic, and adipogenic cells, whereas the range of their differentiation has long been debated. Muse cells may provide clues to the wide-ranging differentiation potential of MSCs that are observed with low frequency. Furthermore, the utilization of Muse cells may provide a novel strategy for clinical treatment.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Antígenos HLA/metabolismo , Diferenciação Celular , Animais , Teste de Histocompatibilidade/métodos
5.
Cell Mol Life Sci ; 81(1): 54, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261036

RESUMO

In embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), the expression of an RNA-binding pluripotency-relevant protein, LIN28, and the absence of its antagonist, the tumor-suppressor microRNA (miRNA) let-7, play a key role in maintaining pluripotency. Muse cells are non-tumorigenic pluripotent-like stem cells residing in the bone marrow, peripheral blood, and organ connective tissues as pluripotent surface marker SSEA-3(+). They express pluripotency genes, differentiate into triploblastic-lineage cells, and self-renew at the single cell level. Muse cells do not express LIN28 but do express let-7 at higher levels than in iPSCs. In Muse cells, we demonstrated that let-7 inhibited the PI3K-AKT pathway, leading to sustainable expression of the key pluripotency regulator KLF4 as well as its downstream genes, POU5F1, SOX2, and NANOG. Let-7 also suppressed proliferation and glycolysis by inhibiting the PI3K-AKT pathway, suggesting its involvement in non-tumorigenicity. Furthermore, the MEK/ERK pathway is not controlled by let-7 and may have a pivotal role in maintaining self-renewal and suppression of senescence. The system found in Muse cells, in which the tumor suppressor let-7, but not LIN28, tunes the expression of pluripotency genes, might be a rational cell system conferring both pluripotency-like properties and a low risk for tumorigenicity.


Assuntos
Alprostadil , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Células-Tronco Embrionárias , Expressão Gênica
6.
BJU Int ; 133(3): 332-340, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37983592

RESUMO

OBJECTIVE: To evaluate the effect of intravenous administration of human multilineage-differentiating stress-enduring (Muse) cells on rat postoperative erectile dysfunction (ED) with cavernous nerve (CN) injury without an immunosuppressant. MATERIALS AND METHODS: Male Sprague-Dawley rats were randomised into three groups after CN crush injury. Either human-Muse cells, non-Muse mesenchymal stem cells (MSCs) (both 1.0 × 105 cells), or vehicle was infused intravenously at 3 h after CN injury without immunosuppressant. Erectile function was assessed by measuring intracavernous pressure (ICP) and arterial pressure (AP) during pelvic nerve electrostimulation 28 days after surgery. At 48 h and 28 days after intravenous infusion of Muse cells, the homing of Muse cells and non-Muse MSCs was evaluated in the major pelvic ganglion (MPG) after CN injury. In addition, expressions of C-X-C motif chemokine ligand (Cxcl12) and glial cell line-derived neurotrophic factor (Gdnf) in the MPG were examined by real-time polymerase chain reaction. Statistical analyses and comparisons among groups were performed using one-way analysis of variance followed by the Tukey test for parametric data and Kruskal-Wallis test followed by the Dunn-Bonferroni test for non-parametric data. RESULTS: The mean (SEM) ICP/AP values at 28 days were 0.51 (0.02) in the Muse cell group, 0.37 (0.03) in the non-Muse MSC group, and 0.36 (0.04) in the vehicle group, showing a significant positive response in the Muse cell group compared with the non-Muse and vehicle groups (P = 0.013 and P = 0.010, respectively). In the MPG, Muse cells were observed to be engrafted at 48 h and expressed Schwann cell markers S100 (~46%) and glial fibrillary acidic protein (~24%) at 28 days, while non-Muse MSCs were basically not engrafted at 48 h. Higher gene expression of Cxcl12 (P = 0.048) and Gdnf (P = 0.040) was found in the MPG of the Muse group than in the vehicle group 48 h after infusion. CONCLUSION: Intravenously engrafted human Muse cells recovered rat erectile function after CN injury in a rat model possibly by upregulating Cxcl12 and Gdnf.


Assuntos
Disfunção Erétil , Ratos , Humanos , Masculino , Animais , Disfunção Erétil/etiologia , Disfunção Erétil/terapia , Ratos Sprague-Dawley , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Alprostadil/farmacologia , Modelos Animais de Doenças , Ereção Peniana/fisiologia , Imunossupressores , Pênis
7.
Cell Commun Signal ; 21(1): 262, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770897

RESUMO

DNA damage resulting from genotoxic injury can initiate cellular senescence, a state characterized by alterations in cellular metabolism, lysosomal activity, and the secretion of factors collectively known as the senescence-associated secretory phenotype (SASP). Senescence can have beneficial effects on our bodies, such as anti-cancer properties, wound healing, and tissue development, which are attributed to the SASP produced by senescent cells in their intermediate stages. However, senescence can also promote cancer and aging, primarily due to the pro-inflammatory activity of SASP.Studying senescence is complex due to various factors involved. Genotoxic stimuli cause random damage to cellular macromolecules, leading to variations in the senescent phenotype from cell to cell, despite a shared program. Furthermore, senescence is a dynamic process that cannot be analyzed as a static endpoint, adding further complexity.Investigating SASP is particularly intriguing as it reveals how a senescence process triggered in a few cells can spread to many others, resulting in either positive or negative consequences for health. In our study, we conducted a meta-analysis of the protein content of SASP obtained from different research groups, including our own. We categorized the collected omic data based on: i) cell type, ii) harmful agent, and iii) senescence stage (early and late senescence).By employing Gene Ontology and Network analysis on the omic data, we identified common and specific features of different senescent phenotypes. This research has the potential to pave the way for the development of new senotherapeutic drugs aimed at combating the negative consequences associated with the senescence process. Video Abstract.


Assuntos
Neoplasias , Senoterapia , Humanos , Secretoma , Envelhecimento , Senescência Celular , Neoplasias/metabolismo , Fenótipo
8.
Sci Rep ; 13(1): 14958, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696826

RESUMO

Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative pluripotent stem cells present in the bone marrow, peripheral blood, and organ connective tissues. We assessed the homing and therapeutic effects of systemically administered nafimestrocel, a clinical-grade human Muse cell-based product, without immunosuppressants in a neonatal hypoxic-ischemic (HI) rat model. HI injury was induced on postnatal day 7 (P7) and was confirmed by T2-weighted magnetic resonance imaging on P10. HI rats received a single dose nafimestrocel (1 × 106 cells/body) or Hank's balanced salt solution (vehicle group) intravenously at either three days (on P10; M3 group) or seven days (on P14; M7 group) after HI insult. Radioisotope experiment demonstrated the homing of chromium-51-labeled nafimestrocel to the both cerebral hemispheres. The cylinder test (M3 and M7 groups) and open-field test (M7 group) showed significant amelioration of paralysis and hyperactivity at five weeks of age compared with those in the vehicle group. Nafimestrocel did not cause adverse events such as death or pathological changes in the lung at ten weeks in the both groups. Nafimestrocel attenuated the production of tumor necrosis factor-α and inducible nitric oxide synthase from activated cultured microglia in vitro. These results demonstrate the potential therapeutic benefits and safety of nafimestrocel.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Humanos , Animais , Ratos , Animais Recém-Nascidos , Alprostadil , Hipóxia-Isquemia Encefálica/terapia , Hipóxia , Excipientes
9.
J Neurotrauma ; 40(23-24): 2596-2609, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37051701

RESUMO

Abstract Spinal cord injury (SCI) is a serious neurological disorder, with the consequent disabilities conferred by this disorder typically persisting for life. Multilineage-differentiating stress-enduring (Muse) cells are endogenous stem cells that can be collected from various tissues as well as from mesenchymal stem cells (MSCs); additionally, these Muse cells are currently being used in clinical trials. The anti-inflammatory effect of stem cell transplantation prevents secondary injuries of SCI; however, its effect on Muse cells remains unclear. In this study, we aimed to compare the anti-inflammatory effects of adipose (AD)- and bone marrow (BM)-Muse cells that were isolated from mice (6-week-old C57BL/6J) following intralesional administration during the acute phase of SCI. Flow cytometry was used to isolate Muse cells from AD and BM MSCs. The percentage of Muse cells was 3.9 and 2.7% for AD and BM MSCs, respectively. To examine cell viability, Muse cells were incubated under H2O2-induced oxidative stress conditions. Overall, AD-Muse cells exhibited higher viability than BM-Muse cells (p = 0.032). In enzyme-linked immunosorbent assay analysis, AD-Muse cells displayed greater secretion of brain-derived neurotrophic factor (BDNF; p = 0.008), vascular endothelial growth factor (p = 0.032), and hepatocyte growth factor (p = 0.016). DNA microarray analysis revealed higher expression of Bdnf, neurotrophin-3 (Ntf3), nerve growth factor (Ngf), pleiotrophin (Ptn), and midkine (Mdk) in AD-Muse cells than in BM-Muse cells. To assess their anti-inflammatory effects in vitro, Muse cells and macrophages were co-cultured, and the levels of cytokines (tumor necrosis factor [TNF] α and interleukin [IL] 10) were measured in the medium. Consequently, we found that TNFα levels were lower in AD-Muse cells than in BM-Muse cells (p = 0.009), and IL10 levels were higher in AD-Muse cells than in BM-Muse cells (p = 0.008). Further, we induced moderate injuries via contusion of the spinal cord at the T10 level; Muse cells were transplanted intralesionally 7 days post-SCI. The number of surviving cells, alongside the number of CD86+ (M1 inflammatory effect), and CD206+ (M2 anti-inflammatory effect) macrophages in the spinal cord were measured 7 days post-transplantation. The number of surviving AD-Muse cells was higher than the number of surviving BM-Muse cells (ratio of AD-Muse/BM-Muse = 2.5, p > 0.05). The M1/M2 ratio in the AD-Muse cell-group (0.37) was lower than that in the control (phosphate-buffered saline) group (3.60, p = 0.008). The lesion area in the AD-Muse cell group was smaller than that in the BM-non-Muse (p = 0.049) and control groups (p = 0.012). As AD-Muse cells conferred a higher cell survival and neurotrophic factor secretion ability in vitro, AD-Muse cells demonstrated reduced inflammation after SCI. Overall, intralesional AD-Muse cell therapy is a potential therapeutic candidate that is expected to exhibit anti-inflammatory effects following acute SCI.


Assuntos
Transplante de Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Fator A de Crescimento do Endotélio Vascular , Alprostadil , Peróxido de Hidrogênio , Camundongos Endogâmicos C57BL , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Medula Espinal/metabolismo , Anti-Inflamatórios
10.
iScience ; 25(11): 105395, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36339265

RESUMO

Somatic stem cells are advantageous research targets for understanding the properties required to maintain stemness. Human bone marrow-mesenchymal stromal cells (BM-MSCs) were separated into pluripotent-like SSEA-3(+) Muse cells (Muse-MSCs) and multipotent SSEA-3(-) MSCs (MSCs) and were subjected to single-cell RNA sequencing analysis. Compared with MSCs, Muse-MSCs exhibited higher expression levels of the p53 repressor MDM2; signal acceptance-related genes EGF, VEGF, PDGF, WNT, TGFB, INHB, and CSF; ribosomal protein; and glycolysis and oxidative phosphorylation. Conversely, MSCs had higher expression levels of FGF and ANGPT; Rho family and caveola-related genes; amino acid and cofactor metabolism; MHC class I/II, and lysosomal enzyme genes than Muse-MSCs. Unsupervised clustering further divided Muse-MSCs into two clusters stratified by the expression of cell cycle-related genes, and MSCs into three clusters stratified by the expression of cell cycle-, cytoskeleton-, and extracellular matrix-related genes. This study evaluating the differentiation ability of BM-MSC subpopulations provides intriguing insights for understanding stemness.

11.
Front Pharmacol ; 13: 1027961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339573

RESUMO

Multilineage-differentiating stress enduring (Muse) cells, non-tumorigenic endogenous pluripotent stem cells, reside in the bone marrow (BM), peripheral blood, and connective tissue as pluripotent surface marker SSEA-3(+) cells. They express other pluripotent markers, including Nanog, Oct3/4, and Sox2 at moderate levels, differentiate into triploblastic lineages, self-renew at a single cell level, and exhibit anti-inflammatory effects. Cultured mesenchymal stromal cells (MSCs) and fibroblasts contain several percent of SSEA-3(+)-Muse cells. Circulating Muse cells, either endogenous or administered exogenously, selectively accumulate at the damaged site by sensing sphingosine-1-phosphate (S1P), a key mediator of inflammation, produced by damaged cells and replace apoptotic and damaged cells by spontaneously differentiating into multiple cells types that comprise the tissue and repair the tissue. Thus, intravenous injection is the main route for Muse cell treatment, and surgical operation is not necessary. Furthermore, gene introduction or cytokine induction are not required for generating pluripotent or differentiated states prior to treatment. Notably, allogenic and xenogenic Muse cells escape host immune rejection after intravenous injection and survive in the tissue as functioning cells over 6 and ∼2 months, respectively, without immunosuppressant treatment. Since Muse cells survive in the host tissue for extended periods of time, therefore their anti-inflammatory, anti-fibrotic, and trophic effects are long-lasting. These unique characteristics have led to the administration of Muse cells via intravenous drip in clinical trials for stroke, acute myocardial infarction, epidermolysis bullosa, spinal cord injury, neonatal hypoxic ischemic encephalopathy, amyotrophic lateral sclerosis, and COVID-19 acute respiratory distress syndrome without HLA-matching or immunosuppressive treatment.

12.
Front Cardiovasc Med ; 9: 981088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440014

RESUMO

Cell-based therapies hold great promise for the treatment of peripheral arterial disease (PAD), especially in patients presenting with severe limb ischemia, although the optimal strategy remains to be explored. In this study, we evaluated the therapeutic effect of intravenous administration of human Muse cells, a unique subpopulation of mesenchymal stem cells (MSC), using a mouse model of hindlimb ischemia (HLI) without an immunosuppressant. Compared with the phosphate buffered saline (PBS) or non-Muse MSC groups, the Muse group showed significantly higher laser doppler blood flow in the ischemic limb at days 7 and 14 after HLI. Increased microvascular density [percent area of CD31(+) cells] and reduced interstitial fibrosis in the ischemic limb muscle were also observed in the Muse group. mCherry-expressing Muse cells were found in the ischemic border zone and expressed CD31 but did not in the non-ischemic limb. Muse cells produced higher amounts of vascular endothelial growth factor (VEGF) than non-Muse cells under normoxic and hypoxic conditions in vitro. In the ischemic muscle, tissue VEGF concentration and angiogenesis-related genes such as Vegfa, Angpt1, Pdgfb, and Igf1 were significantly higher in the Muse group than in the other two groups. In addition, the proportion of M2 macrophages to total macrophages and the ratio of anti-inflammatory-related genes such as IL-10, Arg1, and CD206 per iNOS were significantly higher in the Muse group than in the other two groups. In summary, Muse cells exert pleiotropic effects in a mouse model of HLI, and therefore may provide a novel therapeutic approach for the treatment of PAD patients with severe limb ischemia.

13.
Sci Rep ; 12(1): 17222, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241699

RESUMO

Multilineage-differentiating stress-enduring (Muse) cells are non-tumorigenic pluripotent-like stem cells that exhibit triploblastic differentiation and self-renewability at the single-cell level, and are collectable as pluripotent surface marker SSEA-3(+) from the bone marrow (BM), peripheral blood, and organ connective tissues. SSEA-3(+) cells from human amniotic membrane mesenchymal stem cells (hAMSCs) were compared with hBM-Muse cells. Similar to hBM-Muse cells, hAMSC-SSEA-3(+) cells expressed pluripotency genes (OCT3/4, NANOG, and SOX2), differentiated into triploblastic cells from a single cell, self-renewed, and exhibited non-tumorigenicity. Notably, however, they exhibited unique characteristics not seen in hBM-Muse cells, including higher expression of genes related to germline- and extraembryonic cell-lineages compared with those in hBM-Muse cells in single-cell RNA-sequencing; and enhanced expression of markers relevant to germline- (PRDM14, TFAP2C, and NANOS3) and extraembryonic cell- (CDX2, GCM1, and ID2) lineages when induced by cytokine subsets, suggesting a broader differentiation potential similar to naïve pluripotent stem cells. t-SNE dimensionality reduction and Gene ontology analysis visualized hAMSC-SSEA-3(+) cells comprised a large undifferentiated subpopulation between epithelial- and mesenchymal-cell states and a small mesenchymal subpopulation expressing genes relevant to the placental formation. The AM is easily accessible by noninvasive approaches. These unique cells are a potentially interesting target naïve pluripotent stem cell-like resource without tumorigenicity.


Assuntos
Alprostadil , Âmnio , Diferenciação Celular , Citocinas , Feminino , Humanos , Placenta , Gravidez , RNA
14.
Cell Mol Life Sci ; 79(11): 542, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203068

RESUMO

Stem cells undergo cytokine-driven differentiation, but this process often takes longer than several weeks to complete. A novel mechanism for somatic stem cell differentiation via phagocytosing 'model cells' (apoptotic differentiated cells) was found to require only a short time frame. Pluripotent-like Muse cells, multipotent mesenchymal stem cells (MSCs), and neural stem cells (NSCs) phagocytosed apoptotic differentiated cells via different phagocytic receptor subsets than macrophages. The phagocytosed-differentiated cell-derived contents (e.g., transcription factors) were quickly released into the cytoplasm, translocated into the nucleus, and bound to promoter regions of the stem cell genomes. Within 24 ~ 36 h, the cells expressed lineage-specific markers corresponding to the phagocytosed-differentiated cells, both in vitro and in vivo. At 1 week, the gene expression profiles were similar to those of the authentic differentiated cells and expressed functional markers. Differentiation was limited to the inherent potential of each cell line: triploblastic-, adipogenic-/chondrogenic-, and neural-lineages in Muse cells, MSCs, and NSCs, respectively. Disruption of phagocytosis, either by phagocytic receptor inhibition via small interfering RNA or annexin V treatment, impeded differentiation in vitro and in vivo. Together, our findings uncovered a simple mechanism by which differentiation-directing factors are directly transferred to somatic stem cells by phagocytosing apoptotic differentiated cells to trigger their rapid differentiation into the target cell lineage.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Alprostadil , Anexina A5 , Diferenciação Celular , Citocinas , Fagocitose , RNA Interferente Pequeno , Fatores de Transcrição
15.
Cells ; 11(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36078111

RESUMO

Gap junctions (GJ) are suggested to support stem cell differentiation. The Muse cells that are applied in clinical trials are non-tumorigenic pluripotent-like endogenous stem cells, can be collected as stage-specific embryonic antigen 3 (SSEA-3+) positive cells from multiple tissues, and show triploblastic differentiation and self-renewability at a single cell level. They were reported to up-regulate pluripotency gene expression in suspension. We examined how GJ inhibition affected pluripotency gene expression in adherent cultured-Muse cells. Muse cells, mainly expressing gap junction alpha-1 protein (GJA1), reduced GJ intercellular communication from ~85% to 5-8% after 24 h incubation with 120 µM 18α-glycyrrhetinic acid, 400 nM 12-O-tetradecanoylphorbol-13-acetate, and 90 µM dichlorodiphenyltrichloroethane, as confirmed by a dye-transfer assay. Following inhibition, NANOG, OCT3/4, and SOX2 were up-regulated 2-4.5 times more; other pluripotency-related genes, such as KLF4, CBX7, and SPRY2 were elevated; lineage-specific differentiation-related genes were down-regulated in quantitative-PCR and RNA-sequencing. Connexin43-siRNA introduction also confirmed the up-regulation of NANOG, OCT3/4, and SOX2. YAP, a co-transcriptional factor in the Hippo signaling pathway that regulates pluripotency gene expression, co-localized with GJA1 (also known as Cx43) in the cell membrane and was translocated to the nucleus after GJ inhibition. Adherent culture is usually more suitable for the stable expansion of cells than is a suspension culture. GJ inhibition is suggested to be a simple method to up-regulate pluripotency in an adherent culture that involves a Cx43-YAP axis in pluripotent stem cells, such as Muse cells.


Assuntos
Conexina 43 , Células-Tronco Pluripotentes , Alprostadil/metabolismo , Comunicação Celular , Conexina 43/genética , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Expressão Gênica , Células-Tronco Pluripotentes/metabolismo
16.
PLoS One ; 17(3): e0265347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35324926

RESUMO

BACKGROUND: We recently reported that multilineage-differentiating stress enduring (Muse) cells intravenously administered after acute myocardial infarction (AMI), selectively engrafted to the infarct area, spontaneously differentiated into cardiomyocytes and vessels, reduced the infarct size, improved the left ventricular (LV) function and remodeling in rabbits. We aimed to clarify the efficiency of Muse cells in a larger animal AMI model of mini-pigs using a semi-clinical grade human Muse cell product. METHOD AND RESULT: Mini-pigs underwent 30 min of coronary artery occlusion followed by 2 weeks of reperfusion. Semi-clinical grade human Muse cell product (1x107, Muse group, n = 5) or saline (Vehicle group, n = 7) were intravenously administered at 24 h after reperfusion. The infarct size, LV function and remodeling were evaluated by echocardiography. Arrhythmias were evaluated by an implantable loop recorder. The infarct size was significantly smaller in the Muse group (10.5±3.3%) than in the Vehicle group (21.0±2.0%). Both the LV ejection fraction and fractional shortening were significantly greater in the Muse group than in the Vehicle group. The LV end-systolic and end-diastolic dimensions were significantly smaller in the Muse group than in the Vehicle group. Human Muse cells homed into the infarct border area and expressed cardiac troponin I and vascular endothelial CD31. No arrhythmias and no blood test abnormality were observed. CONCLUSION: Muse cell product might be promising for AMI therapy based on the efficiency and safety in a mini-pig AMI.


Assuntos
Alprostadil , Infarto do Miocárdio , Animais , Arritmias Cardíacas , Modelos Animais de Doenças , Humanos , Coelhos , Suínos , Porco Miniatura , Função Ventricular Esquerda
17.
Int Urogynecol J ; 33(5): 1293-1301, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35333929

RESUMO

INTRODUCTION AND HYPOTHESIS: We investigated the effects of locally administered human multilineage-differentiating stress enduring (Muse) cells, nontumorigenic pluripotent-like endogenous stem cells, on bladder tissues, function, and nociceptive behavior in a chemically induced Hunner-type interstitial cystitis (HIC)-like rat model without immunosuppressant. METHODS: Chemical cystitis was induced by intravesical instillation of 0.2 N hydrochloride (HCl) for 15 min in female F344 rats. SSEA-3+ Muse cells, SSEA-3- non-Muse cells or Hanks' balanced salt solution (HBSS; vehicle) were injected into the anterior and posterior bladder wall at each 1×104 cells/10 µl 6 h after HCl application. The sham group received HBSS without HCl instillation. Urinary frequency was assessed using metabolic cages, cystometrograms, nociceptive behavior, and histological analysis of the bladder and L6 spinal cord. RESULTS: Increases in urinary frequency and decreases in bladder capacity compared with the sham group were observed in the vehicle and non-Muse groups, but not in the Muse group, at 1 week. Significant increases in nociceptive behavior compared with the sham group and the expression of TNFα in the bladder and c-Fos in the bilateral dorsal horns of L6 spinal cord were also observed in the vehicle and non-Muse groups, whereas these changes were not seen in the Muse group at 1 week. Histological analysis exhibited a higher proportion of injected Muse cells remaining in the urothelial basal layer and lamina propria of the bladder than non-Muse cells until 4 weeks. CONCLUSIONS: Muse cell therapy could be a promising modality for treating HIC.


Assuntos
Cistite Intersticial , Cistite , Alprostadil/efeitos adversos , Animais , Feminino , Humanos , Nociceptividade , Ratos , Ratos Endogâmicos F344
18.
Surg Today ; 52(4): 603-615, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34687364

RESUMO

INTRODUCTION: We examined the effect of intravenously injected human multilineage-differentiating stress-enduring (Muse) cells, non-tumorigenic endogenous reparative stem cells already used in clinical trials, on a severe acute pancreatitis (SAP) mouse model without immunosuppressants. METHODS: Human Muse cells (1.0 × 105 cells) collected from mesenchymal stem cells (MSCs) as SSEA-3(+) were injected into a C57BL/6 mouse model via the jugular vein 6 h after SAP-induction with taurocholate. The control group received saline or the same number of SSEA-3(-)-non-Muse MSCs. RESULTS: Edematous parameters, F4/80(+) macrophage infiltration and terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity was the lowest and the number of proliferating endogenous pancreatic progenitors (CK18(+)/Ki67(+) cells) the highest in the Muse group among the three groups, with statistical significance, at 72 h. An enzyme-linked immunosorbent assay and quantitative polymerase chain reaction demonstrated that in vitro production of VEGF, HGF, IGF-1, and MMP-2, which are relevant to tissue protection, anti-inflammation, and anti-fibrosis, were higher in Muse cells than in non-Muse MSCs, particularly when cells were cultured in SAP mouse serum. Consistently, the pancreas of animals in the Muse group contained higher amounts of those factors according to Western blotting at 18 h than that in the non-Muse MSCs and control groups. CONCLUSIONS: Intravenous injection of human Muse cells was suggested to be effective for attenuating edema, inflammation and apoptosis in the acute phase of SAP.


Assuntos
Imunossupressores , Pancreatite , Doença Aguda , Animais , Diferenciação Celular , Humanos , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Pancreatite/terapia
19.
J Cardiol ; 80(1): 80-87, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34924234

RESUMO

Rapid percutaneous coronary intervention for acute myocardial infarction (AMI) reduces acute mortality, but there is an urgent need for treatment of left ventricular dysfunction and remodeling after AMI to improve the prognosis. The myocardium itself does not have a high regenerative capacity, and it is important to minimize the loss of cardiomyocytes and maintain the cardiac function after AMI. To overcome these problems, attention has been focused on myocardial regeneration therapy using cells derived from bone marrow. The clinical use of bone marrow stem cells is considered to have low safety concerns based on the experience of using bone marrow transplantation for blood diseases in clinical practice. It has been reported that bone marrow mononuclear cells (BM-MNC) and mesenchymal stem cells (BM-MSC) differentiate into cardiomyocytes both in vitro and in vivo, and they have been considered a promising source for stem cell therapy. To prevent heart failure after human AMI, studies have been conducted to regenerate myocardial tissue by transplanting bone marrow stem cells, such as BM-MSCs and BM-MNCs. Therapies using those cells have been administered to animal models of AMI, and were effective to some extent, but the effect in clinical trials was limited. Recently, it was reported that multilineage-differentiating stress enduring cells (Muse cells), which are endogenous pluripotent stem cells obtainable from various tissues including the bone marrow, more markedly reduced the myocardial infarct size and improved the cardiac function via regeneration of cardiomyocytes and vessels and paracrine effects compared with BM-MSCs. Here, we describe stem cell therapies using conventional BM-MNCs and BM-MSCs, and Muse cells which have potential for clinical use for the treatment of AMI.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Alprostadil , Animais , Transplante de Medula Óssea , Humanos , Infarto do Miocárdio/terapia , Transplante de Células-Tronco
20.
Brain Circ ; 7(1): 13-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084971

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is a major cause of acute neonatal brain injury and can lead to disabling long-term neurological complications. Treatment for HIE is limited to supportive care and hypothermia within 6 h injury which is reserved for full-term infants. Preclinical studies suggest the potential for cell-based therapies as effective treatments for HIE. Some clinical trials using umbilical cord blood cells, placenta-derived stem cells, mesenchymal stem cells (MSCs), and others have yielded promising results though more studies are needed to optimize protocols and multi-center trials are needed to prove safety and efficacy. To date, the therapeutic effects of most cell-based therapies are hypothesized to stem from the bystander effect of donor cells. Transplantation of stem cells attenuate the aberrant inflammation cascade following HIE and provide a more ideal environment for endogenous neurogenesis and repair. Recently, a subset of MSCs, the multilineage-differentiating stress-enduring (Muse) cells have shown to treat HIE and other models of neurologic diseases by replacing dead or ischemic cells and have reached clinical trials. In this review, we examine the different cell sources used in clinical trials and evaluate the underlying mechanism behind their therapeutic effects. Three databases-PubMed, Web of Science, and ClinicalTrials.gov-were used to review preclinical and clinical experimental treatments for HIE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA