Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Appl Environ Microbiol ; 78(8): 2578-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22307301

RESUMO

The objectives of this study were to investigate the presence of Shiga toxin-producing Escherichia coli (STEC) strains in wildlife that have spread in Europe, living near human settlements; to analyze their epidemiological role in maintenance and transmission to domestic livestock; and to assess the potential health risk of wildlife-carried strains. STEC strains were recovered from 53% of roe deer, 8.4% of wild boars, and 1.9% of foxes sampled in the northwest of Spain (Galicia). Of the 40 serotypes identified, 21 were classified as seropathotypes associated with human disease, accounting for 81.5% of the wildlife-carried STEC strains, including the enterohemorrhagic serotypes O157:H7-D-eae-γ1, O26:[H11]-B1-eae-ß1, O121:H19-B1-eae-ε1, and O145:[H28]-D-eae-γ1. None of the wildlife-carried strains belonged to the highly pathogenic serotype O104:H4-B1 from the recent Germany outbreak. Forty percent of wildlife-carried STEC strains shared serotypes, phylogroups, intimin types, and Stx profiles with isolates from human patients from the same geographic area. Furthermore, wildlife-carried strains belonging to serotypes O5:HNM-A, O26:[H11]-B1, O76:H19-B1, O145:[H28]-D, O146:H21-B1, and O157:H7-D showed pulsed-field gel electrophoresis (PFGE) profiles with >85% similarity to human-pathogenic STEC strains. We also found a high level of similarity among STEC strains of serotypes O5:HNM-A, O26:[H11]-B1, and O145:HNM-D of bovine (feces and beef) and wildlife origins. Interestingly, O146:H21-B1, the second most frequently detected serotype in this study, is commonly associated with human diarrhea and isolated from beef and vegetables sold in Galicia. Importantly, at least 3 STEC isolates from foxes (O5:HNM-A-eae-ß1, O98:[H21]-B1-eae-ζ1, and O146:[H21]-B1) showed characteristics similar to those of human STEC strains. In conclusion, roe deer, wild boar, and fox in Galicia are confirmed to be carriers of STEC strains potentially pathogenic for humans and seem to play an important role in the maintenance of STEC.


Assuntos
Adesinas Bacterianas/genética , Animais Selvagens/microbiologia , Proteínas de Escherichia coli/genética , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Análise por Conglomerados , Eletroforese em Gel de Campo Pulsado , Genótipo , Tipagem Molecular , Sorotipagem , Escherichia coli Shiga Toxigênica/genética , Espanha
3.
Vet Microbiol ; 156(3-4): 347-52, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22112854

RESUMO

The present study characterizes, for the first time, two emerging avian pathogenic Escherichia coli (APEC) clonal groups of serogroup O111: O111:H4-D-ST117 and O111:H4-D-ST2085. The clonal group O111:H4-D-ST117 was already present in APEC strains isolated between 1991 and 2000, and was still present in strains isolated between 2004 and 2009, showing long time evolution according to the virulence-gene differences and macrorestriction profiles. Among ST117 strains, two virulence profiles could be distinguished: papG II-positive tsh-negative strains which satisfied criteria for extraintestinal pathogenic E. coli (ExPEC), and papG II-negative tsh-positive strains without ExPEC status. Interestingly, we have detected a human septicemic O111:H4-D-ST117 ExPEC strain isolated from a hemocultive in 2000 whose macrorestriction profile showed >85% similarity with four APEC strains of the study. The clonal group O111:H4-D-ST2085 was exclusively detected in 17 APEC strains isolated in 2008 and 2009, and showed short time evolution based on its homogeneity since all were nalidixic acid-resistant, all had ExPEC status, and most carried papG II and tsh genes. From the clinical point of view, O111:H4-D-ST2085 seems a successful clonal group that could be the result of the epidemiological evolution of O111:H4-D-ST117. Due to the increasing prevalence of both clonal groups among clinical APEC isolates, their high virulence-gene content, and zoonotic potential, we suggest them as possible candidates for the development of a future vaccine against avian colibacillosis.


Assuntos
Doenças das Aves/microbiologia , Aves/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Escherichia coli/patogenicidade , Animais , Técnicas de Tipagem Bacteriana , Doenças das Aves/epidemiologia , Farmacorresistência Bacteriana , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genótipo , Humanos , Tipagem de Sequências Multilocus , Filogenia , Espanha/epidemiologia , Virulência , Fatores de Virulência/genética
4.
Res Microbiol ; 156(7): 793-806, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15921895

RESUMO

A total of 722 Shiga toxin-producing Escherichia coli (STEC) isolates recovered from humans, cattle, ovines and food during the period from 1992 to 1999 in Spain were examined to determine antimicrobial resistance profiles and their association with serotypes, phage types and virulence genes. Fifty-eight (41%) out of 141 STEC O157:H7 strains and 240 (41%) out of 581 non-O157 STEC strains showed resistance to at least one of the 26 antimicrobial agents tested. STEC O157:H7 showed a higher percentage of resistant strains recovered from bovine (53%) and beef meat (57%) than from human (23%) and ovine (20%) sources, whereas the highest prevalence of antimicrobial resistance in non-O157 STEC was found among isolates recovered from beef meat (55%) and human patients (47%). Sulfisoxazole (36%) had the most common antimicrobial resistance, followed by tetracycline (32%), streptomycin (29%), ampicillin (10%), trimethoprim (8%), cotrimoxazole (8%), chloramphenicol (7%), kanamycin (7%), piperacillin (6%), and neomycin (5%). The multiple resistance pattern most often observed was that of streptomycin, sulfisoxazole, and tetracycline. Ten (7%) STEC O157:H7 and 71 (12%) non-O157 strains were resistant to five or more antimicrobial agents. Most strains showing resistance to five or more antimicrobial agents belonged to serotypes O4:H4 (4 strains), O8:H21 (3 strains), O20:H19 (6 strains), O26:H11 (8 strains eae-beta1), O111:H- (3 strains eae-gamma2), O118:H- (2 strains eae-beta1), O118:H16 (5 strains eae-beta1), O128:H- (2 strains), O145:H8 or O145:H- (2 strains eae-gamma1), O157:H7 (10 strains eae-gamma1), O171:H25 (3 strains), O177:H11 (5 strains eae-beta1), ONT:H- (3 strains/1 eae-beta1) and ONT:H21 (2 strains). Interestingly, most of these serotypes, i.e., those indicated in bold) were found among human STEC strains isolated from patients with hemolytic uremic-syndrome (HUS) reported in previous studies. We also detected, among non-O157 strains, an association between a higher level of multiple resistance to antibiotics and the presence of the virulence genes eae and stx(1). Moreover, STEC O157:H7, showed an association between certain phage types, PT21/28 (90%), PT23 (75%), PT34 (75%), and PT2 (54%), with a higher number of resistant strains. We conclude that the high prevalence of antimicrobial resistance detected in our study is a source of concern, and cautious use of antibiotics in animals is highly recommended.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli O157/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Toxinas Shiga/análise , Adesinas Bacterianas/genética , Animais , Tipagem de Bacteriófagos , Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Proteínas de Escherichia coli/genética , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Sorotipagem , Ovinos/microbiologia , Toxina Shiga I/genética , Espanha , Fatores de Virulência/genética
5.
J Clin Microbiol ; 42(9): 4007-15, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15364983

RESUMO

Phage typing and DNA macrorestriction fragment analysis by pulsed-field electrophoresis (PFGE) were used for the epidemiological subtyping of a collection of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains isolated in Spain between 1980 and 1999. Phage typing distinguished a total of 18 phage types among 171 strains isolated from different sources (67 humans, 82 bovines, 12 ovines, and 10 beef products). However, five phage types, phage type 2 (PT2; 42 strains), PT8 (33 strains), PT14 (14 strains), PT21/28 (11 strains), and PT54 (16 strains), accounted for 68% of the study isolates. PT2 and PT8 were the most frequently found among strains from both humans (51%) and bovines (46%). Interestingly, we detected a significant association between PT2 and PT14 and the presence of acute pathologies. A group of 108 of the 171 strains were analyzed by PFGE, and 53 distinct XbaI macrorestriction patterns were identified, with 38 strains exhibiting unique PFGE patterns. In contrast, phage typing identified 15 different phage types. A total of 66 phage type-PFGE subtype combinations were identified among the 108 strains. PFGE subtyping differentiated between unrelated strains that exhibited the same phage type. The most common phage type-PFGE pattern combinations were PT2-PFGE type 1 (1 human and 11 bovine strains), PT8-PFGE type 8 (2 human, 6 bovine, and 1 beef product strains), PT2-PFGE subtype 4A (1 human, 3 bovine, and 1 beef product strains). Nine (29%) of 31 human strains showed phage type-PFGE pattern combinations that were detected among the bovine strains included in this study, and 26 (38%) of 68 bovine strains produced phage type-PFGE pattern combinations observed among human strains included in this study, confirming that cattle are a major reservoir of strains pathogenic for humans. PT2 and PT8 strains formed two groups which differed from each other in their motilities, stx genotypes, PFGE patterns, and the severity of the illnesses that they caused.


Assuntos
Colífagos/classificação , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/virologia , Animais , Sequência de Bases , Bovinos , Chlorocebus aethiops , Colífagos/genética , Colífagos/isolamento & purificação , Primers do DNA , Eletroforese em Gel de Campo Pulsado , Genes Virais , Células HeLa , Humanos , Mapeamento por Restrição , Toxina Shiga/análise , Espanha , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA