Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Radiat Res ; 200(1): 48-64, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141110

RESUMO

The CGL1 human hybrid cell system has been utilized for many decades as an excellent cellular tool for investigating neoplastic transformation. Substantial work has been done previously implicating genetic factors related to chromosome 11 to the alteration of tumorigenic phenotype in CGL1 cells. This includes candidate tumor suppressor gene FOSL1, a member of the AP-1 transcription factor complex which encodes for protein FRA1. Here we present novel evidence supporting the role of FOSL1 in the suppression of tumorigenicity in segregants of the CGL1 system. Gamma-induced mutant (GIM) and control (CON) cells were isolated from 7 Gy gamma-irradiated CGL1s. Western, Southern and Northern blot analysis were utilized to assess FOSL1/FRA1 expression as well as methylation studies. GIMs were transfected to re-express FRA1 and in vivo tumorigenicity studies were conducted. Global transcriptomic microarray and RT-qPCR analysis were used to further characterize these unique cell segregants. GIMs were found to be tumorigenic in vivo when injected into nude mice whereas CON cells were not. GIMs show loss of Fosl/FRA1 expression as confirmed by Western blot. Southern and Northern blot analysis further reveals that FRA1 reduction in tumorigenic CGL1 segregants is likely due to transcriptional suppression. Results suggest that radiation-induced neoplastic transformation of CGL1 is in part due to silencing of the FOSL1 tumor suppressor gene promoter by methylation. The radiation-induced tumorigenic GIMs transfected to re-express FRA1 resulted in suppression of subcutaneous tumor growth in nude mice in vivo. Global microarray analysis and RT-qPCR validation elucidated several hundred differentially expressed genes. Downstream analysis reveals a significant number of altered pathways and enriched Gene Ontology terms genes related to cellular adhesion, proliferation, and migration. Together these findings provide strong evidence that FRA1 is a tumor suppressor gene deleted and epigenetically silenced after ionizing radiation-induced neoplastic transformation in the CGL1 human hybrid cell system.


Assuntos
Transformação Celular Neoplásica , Neoplasias Induzidas por Radiação , Animais , Camundongos , Humanos , Camundongos Nus , Transformação Celular Neoplásica/genética , Células HeLa , Genes Supressores de Tumor , Carcinogênese/genética , Neoplasias Induzidas por Radiação/patologia , Fenótipo , Genômica , Epigênese Genética , Regulação Neoplásica da Expressão Gênica
2.
Free Radic Biol Med ; 51(12): 2249-58, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22019440

RESUMO

We investigated the efficacy and mechanism of dimethylaminoparthenolide (DMAPT), an NF-κB inhibitor, to sensitize human lung cancer cells to X-ray killing in vitro and in vivo. We tested whether DMAPT increased the effectiveness of single and fractionated X-ray treatment through inhibition of NF-κB and/or DNA double-strand break (DSB) repair. Treatment with DMAPT decreased plating efficiency, inhibited constitutive and radiation-induced NF-κB binding activity, and enhanced radiation-induced cell killing by dose modification factors of 1.8 and 1.4 in vitro. X-ray fractionation demonstrated that DMAPT inhibited split-dose recovery/repair, and neutral DNA comet assays confirmed that DMAPT altered the fast and slow components of X-ray-induced DNA DSB repair. Knockdown of the NF-κB family member p65 by siRNA increased radiation sensitivity and completely inhibited split-dose recovery in a manner very similar to DMAPT treatment. The data suggest a link between inhibition of NF-κB and inhibition of DSB repair by DMAPT that leads to enhancement of X-ray-induced cell killing in vitro in non-small-cell lung cancer cells. Studies of A549 tumor xenografts in nude mice demonstrated that DMAPT enhanced X-ray-induced tumor growth delay in vivo.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neoplasias Pulmonares/terapia , NF-kappa B/antagonistas & inibidores , Sesquiterpenos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Camundongos , Camundongos Nus , Relação Estrutura-Atividade , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA