Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1271599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444805

RESUMO

Anaerobic in vitro fermentation is widely used to simulate rumen kinetics and study the microbiome and metabolite profiling in a controlled lab environment. However, a better understanding of the interplay between the temporal dynamics of fermentation kinetics, metabolic profiles, and microbial composition in in vitro rumen fermentation batch systems is required. To fill that knowledge gap, we conducted three in vitro rumen fermentations with maize silage as the substrate, monitoring total gas production (TGP), dry matter degradability (dDM), and methane (CH4) concentration at 6, 12, 24, 36, and 48 h in each fermentation. At each time point, we collected rumen fluid samples for microbiome analysis and volatile fatty acid (VFA) analysis. Amplicon sequencing of 16S rRNA genes (V4 region) was used to profile the prokaryotic community structure in the rumen during the fermentation process. As the fermentation time increased, dDM, TGP, VFA concentrations, CH4 concentration, and yield (mL CH4 per g DM at standard temperature and pressure (STP)) significantly increased. For the dependent variables, CH4 concentration and yield, as well as the independent variables TGP and dDM, polynomial equations were fitted. These equations explained over 85% of the data variability (R2 > 0.85) and suggest that TGP and dDM can be used as predictors to estimate CH4 production in rumen fermentation systems. Microbiome analysis revealed a dominance of Bacteroidota, Cyanobacteria, Desulfobacterota, Euryarchaeota, Fibrobacterota, Firmicutes, Patescibacteria, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Significant temporal variations in Bacteroidota, Campylobacterota, Firmicutes, Proteobacteria, and Spirochaetota were detected. Estimates of alpha diversity based on species richness and the Shannon index showed no variation between fermentation time points. This study demonstrated that the in vitro fermentation characteristics of a given feed type (e.g., maize silage) can be predicted from a few parameters (CH4 concentration and yield, tVFA, acetic acid, and propionic acid) without running the actual in vitro trial if the rumen fluid is collected from similar donor cows. Although the dynamics of the rumen prokaryotes changed remarkably over time and in accordance with the fermentation kinetics, more time points between 0 and 24 h are required to provide more details about the microbial temporal dynamics at the onset of the fermentation.

2.
Animals (Basel) ; 12(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077918

RESUMO

The objective of this study was to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. The fruits of Terminalia chebula (HA), Terminalia bellirica (BA), and Triphala churna (TC), a commercial mixture with equal parts (33.3% DM basis) of Phyllanthus emblica, Terminalia bellirica, and Terminalia chebula, were used. These were tested at three inclusion levels of 20% 40% and 100% of the total sample (as dry matter) in maize silage (MS). MS was used as a control (0% additive). These 10 treatments were tested for two 48-h incubations with quadruplicate samples using rumen fluid from 2 heifers. Total gas production (TGP: mL at standard temperature and pressure (STP)/g DM), methane production (expressed as % and mL/g DM), and volatile fatty acids were determined. After incubations, the filtrate was used to measure pH and volatile fatty acids (VFA), while the residue was used to measure degraded dry matter (dDM) and calculate the partitioning factor (PF48) and theoretical short-chain fatty acid concentration (tVFA). Rumen fluid pH linearly (p < 0.01) decreased in all treatments with increasing dose during fermentation. The CH4% was less in all three treatments with 100% autochthonous plants than in control, but there were no significant linear or quadratic effects for increasing BA, HA, and TC doses. The PF48 increased for all treatments with a significant linear and quadratic effect (p < 0.05) of increasing dose. Compared to MS, the inclusion of autochthonous plants increased the total volatile fatty acids, with no significant dose effects. The tVFA linearly decreased (p > 0.05) with an increasing dose of BA and HA. All treatments showed quadratic effects on tVFA (p < 0.05) with increasing dose. Increasing TC dose linearly (p < 0.05) and quadratically (p < 0.05) increased total VFA, while increasing HA dose had only a quadratic (p < 0.05) effect on total VFA. All treatments reduced total gas production (TGP) and methane concentration (CH4%) when compared to MS. The tested autochthonous fruits can be used as additives with a basal feed diet to reduce enteric methane emissions. The most effective anti-methanogenic treatment was 40% HA, which resulted in 18% methane reduction.

3.
Front Vet Sci ; 9: 899314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782564

RESUMO

The aim of this study was to determine the effect of supplementing dairy goat diets with rapeseed oil and sunflower oil on performance, milk composition, milk fatty acid profile, and in vitro fermentation kinetics. Nine Danish Landrace goats with 42 ± 5 days in milk were allocated to three treatment groups for 42 days. Animals received a basal diet, formulated with 85:15 forage:concentrate ratio, and the basal diet was supplemented with either rapeseed oil or sunflower oil at 4% of dry matter. Goat milk was sampled on days 14, 21, and 42. Milk composition was similar between treatments. From day 14 to day 42, milk yield increased (1.03 vs. 1.34 kg/d), while milk fat (2.72 vs. 1.82 g/d) and total solids (11.2 vs. 9.14 %) were reduced. Compared to control and rapeseed oil, sunflower decreased (P < 0.05) C4:0 (1.56, and 1.67 vs. 1.36 g/100 g) and both oils decreased (P < 0.05) C18:3n3 (0.60 vs. 0.20 and 0.10 g/100g). Rapeseed oil increased (P < 0.05) C18:2 cis9, trans11 compared to control and sunflower oil (0.37 vs. 0.13 and 0.19 g/100 g). Untargeted milk foodomics revealed slightly elevated (P < 0.05) gluconic acid and decreased hippuric acid (P < 0.05) in the milk of oil-fed goats compared to control. In vitro dry matter degradation (63.2 ± 0.02 %) was not affected by dietary treatments, while individual volatile fatty acid proportions, total volatile fatty acids (35.7 ± 2.44 mmol/l), CO2 (18.6 ± 1.15 mol), and CH4 (11.6 ± 1.16 mol) were not affected by dietary treatments. Sunflower oil and rapeseed oil decreased (P < 0.05) total gas production at 24 and 48 h compared with control. Overall, the use of sunflower oil or rapeseed oil at 4% DM inclusion did not compromise animal performance and milk composition.

4.
Food Sci Anim Resour ; 41(1): 16-33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33506214

RESUMO

To stop hunger, reducing food losses is a potential movement towards saving food. A large portion of these losses could be avoided and reduced through the improved food chain in many countries. Raising awareness on how and where food losses occur will help recovering foods such as meat by identifying solutions and convincing people to implement those solutions. This, in turn, will lead to private and public efforts to recover meat that might be otherwise wasted. After highlighting the importance of food saving benefits and relevant statistics, this paper explains the possible ways to reduce meat loss and waste in abattoirs and presents a framework for prevention according to the estimates of meat losses in Iran meat supply. The current article answers the questions of where do we have the meat loss in Iran and what approaches are most successful in reducing losses in the meat industry. The national average loss and waste in meat production are about 300,000 metric tonnes (about 15%). Many segments and players are involved with this huge amount of losses in the meat value chain, a large portion of these losses could be avoided and reduced by about 25% through using by-products with the mechanization of design and manufacturing. The production amount of mechanically deboned meat (MDM) is 105,091,000 kg, concluding the major waste (88.33%) of total poultry losses. Ensuring appropriate actions by exploiting the full potential of engaged Iranian associations and institutes is considered to reduce the losses.

5.
Physiol Rep ; 8(19): e14600, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33038074

RESUMO

The aim was to investigate long-term, tissue and sex-specific impacts of pre and postnatal malnutrition on expandability and functional traits of different adipose tissues. Twin-pregnant ewes were fed NORM (~requirements), LOW (50% of NORM) or HIGH (150%/110% of energy/protein) diets the last 6 weeks prepartum (term ~147-days). Lambs received moderate, low-fat (CONV) or high-carbohydrate-high-fat (HCHF) diets from 3 days until 6 months of age, and thereafter CONV diet. At 2½ years of age (adulthood), histomorphometric and gene expression patterns were characterized in subcutaneous (SUB), perirenal (PER), mesenteric (MES), and epicardial (EPI) adipose tissues. SUB had sex-specific (♂<♀) upper-limits for adipocyte size and cell-number indices, irrespective of early life nutrition. PER mass and contents of adipocytes were highest in females and HIGH♂, whereas adipocyte cross-sectional area was lowest in LOW♂. Pre/postnatal nutrition affected gene expression sex-specifically in SUB + PER, but unrelated to morphological changes. In PER, LOW/LOW♂ were specific targets of gene expression changes. EPI was affected by postnatal nutrition, and HCHF sheep had enlarged adipocytes and upregulated expressions for adipogenic and lipogenic genes. Conclusion: upper-limits for SUB expandability were markedly lower in males. Major targets for prenatal malnutrition were PER and males. LOW♂ had the lowest PER expandability, whereas HIGH♂ had an adaptive advantage due to increased hypertrophic ability equivalent to females. Fixed expandability in SUB meant PER became a determining factor for MES and ectopic fat deposition, rendering LOW♂ particularly predisposed for obesity-associated metabolic risks. EPI, in contrast to other tissues, was targeted particularly by early postnatal obesity, resulting in adipocyte hypertrophy in adulthood.


Assuntos
Tecido Adiposo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fatores Sexuais , Ovinos/fisiologia , Animais , Dieta , Feminino , Insulina/metabolismo , Masculino , Desnutrição/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Gravidez , Vitaminas/metabolismo , Vitaminas/farmacologia
6.
Animals (Basel) ; 10(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230825

RESUMO

This study evaluated the effects of increasing doses of pre-fermented rapeseed meal (FRM) without or with inclusion of the brown macroalgae Ascophyllum nodosum (AN) on weaner piglets' performance and gut development. Ten days pre-weaning, standardized litters were randomly assigned to one of nine isoenergetic and isoproteic diets comprising (on DM basis): no supplement (negative control, NC), 2500 ppm ZnO (positive control, PC), 8, 10, 12, 15 or 25% FRM, and 10% FRM plus 0.6 or 1.0% AN. Fifty piglets receiving the same pre-weaning diets were weaned at 28 days of age and transferred to one pen, where they continued on the pre-weaning diet until day 92. At 41 days, six piglets per treatment were sacrificed for blood and intestinal samplings. The average daily gain was at least sustained at any dose of FRM (increased at 8% FRM, 28-41 days) from 18-41 days similar to PC but unaffected by inclusion of AN. The percentage of piglets that completed the experiment was increased by FRM compared to NC, despite detection of diarrhea symptoms. FRM showed quadratic dose-response effects on colon and mid-jejunum crypts depth, and enterocyte and mid-jejunum villus heights with optimum development at 8% or 10% FRM, respectively, but this was abolished when AN was also added. In conclusion, FRM sustained piglet growth performance and intestinal development similar to ZnO with an optimum inclusion level of 8-10% of dietary DM.

8.
J Dairy Sci ; 103(2): 1208-1214, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31837793

RESUMO

The objective of this study was to assess the effects of electrochemically activated drinking water (ECW) on milk chlorate, milk perchlorate, milk iodine, milk composition, milk fatty acid profile, and overall performance of dairy cows. Ten Red Danish cows in mid-lactation (203 ± 31 d in milk; average ± SD) were chosen from these 2 groups for intensive sampling. The treated group drank water with 4 ppm of ECW (29 mg/L of chlorate of Neuthox, Danish Clean Water A/S, Sønderborg, Denmark). The treatment lasted 60 consecutive days, with milk and water sampling on d 0, 30, and 60. Additionally, milk samples from both the control group and treated group were taken on d 90 to assess if any carry-over effect was present. Interactions between period and milk yield and somatic cell for the full group and period and milk fat content and milk urea nitrogen in the selected animals occurred. Milk yield was not significantly affected by treatments. Milk fat, milk fatty acid profile, chlorate, perchlorate, and iodine contents were not significantly different between treatments. Milk urea increased, whereas ß-hydroxybutyrate and somatic cell count decreased significantly in the treated groups. Results showed that at a dosing of 4 ppm of ECW, both chlorate and perchlorate concentrations in milk (<0.002 mg/kg) were low, and no deleterious effects on milk production or milk chemical composition were observed. These data can be of use when assessing the effects of ECW on milk and milk powder chlorate and perchlorate levels and provide a context for assessing the potential for influencing human health under the conditions prevailing on a commercial dairy farm.


Assuntos
Água Potável/química , Leite/química , Ácido 3-Hidroxibutírico/análise , Animais , Bovinos , Cloratos/análise , Dinamarca , Dieta/veterinária , Técnicas Eletroquímicas , Ácidos Graxos/análise , Feminino , Iodo/análise , Lactação , Percloratos/análise
9.
Sci Rep ; 8(1): 10316, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985484

RESUMO

The current study aimed at genomic characterization and improved understanding of genetic diversity of two Indian mithun populations (both farm, 48 animals and field, 24 animals) using genome wide genotype data generated with Illumina BovineHD BeadChip. Eight additional populations of taurine cattle (Holstein and NDama), indicine cattle (Gir) and other evolutionarily closely related species (Bali cattle, Yak, Bison, Gaur and wild buffalo) were also included in this analysis (N = 137) for comparative purposes. Our results show that the genetic background of mithun populations was uniform with few possible signs of indicine admixture. In general, observed and expected heterozygosities were quite similar in these two populations. We also observed increased frequencies of small-sized runs of homozygosity (ROH) in the farm population compared to field mithuns. On the other hand, longer ROH were more frequent in field mithuns, which suggests recent founder effects and subsequent genetic drift due to close breeding in farmer herds. This represents the first study providing genetic evidence about the population structure and genomic diversity of Indian mithun. The information generated will be utilized for devising suitable breeding and conservation programme for mithun, an endangered bovine species in India.


Assuntos
Variação Genética , Genoma , Dinâmica Populacional , Animais , Bovinos , Espécies em Perigo de Extinção , Genótipo , Homozigoto , Índia , Filogenia , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA