Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Mol Biosci ; 11: 1345158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545419

RESUMO

Prokaryotic deacetylases are classified into nicotinamide adenine dinucleotide (NAD+)-dependent sirtuins and Zn2+-dependent deacetylases. NAD+ is a coenzyme for redox reactions, thus serving as an essential component for energy metabolism. The NAD+-dependent deacetylase domain is quite conserved and well characterized across bacterial species like CobB in Escherichia coli and Salmonella, Rv1151c in Mycobacterium, and SirtN in Bacillus subtilis. E. coli CobB is the only bacterial deacetylase with a known crystal structure (PDB ID: 1S5P), which has 91% sequence similarity with Salmonella CobB (SeCobB). Salmonella encodes two CobB isoforms, SeCobBS and SeCobBL, with a difference of 37 amino acids in its N-terminal domain (NTD). The hydrophobic nature of NTD leads to the stable oligomerization of SeCobBL. The homology modeling-based predicted structure of SeCobB showed the presence of a zinc-binding motif of unknown function. Tryptophan fluorescence quenching induced by ZnCl2 showed that Zn2+ has a weak interaction with SeCobBS but higher binding affinity toward SeCobBL, which clearly demonstrated the crucial role of NTD in Zn2+ binding. In the presence of Zn2+, both isoforms had significantly reduced thermal stability, and a greater effect was observed on SeCobBL. Dynamic light scattering (DLS) studies reflected a ninefold increase in the scattering intensity of SeCobBL upon ZnCl2 addition in contrast to an ∼onefold change in the case of SeCobBS, indicating that the Zn2+ interaction leads to the formation of large particles of SeCobBL. An in vitro lysine deacetylase assay showed that SeCobB deacetylated mammalian histones, which can be inhibited in the presence of 0.25-1.00 mM ZnCl2. Taken together, our data conclusively showed that Zn2+ strongly binds to SeCobBL through the NTD that drastically alters its stability, oligomeric status, and enzymatic activity in vitro.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37498378

RESUMO

Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis and develops resistance to many of the existing drugs. The sole licensed TB vaccine, BCG, is unable to provide a comprehensive defense. So, it is crucial to maintain the immunological response to eliminate tuberculosis. Our previous in silico study reported five uncharacterized proteins as potential vaccine antigens. In this article, we considered the uncharacterized Mtb H37Rv regions of difference (RD-2) Rv1987 protein as a promising vaccine candidate. The vaccine quality of the protein was analyzed using reverse vaccinology and immunoinformatics-based quality-checking parameters followed by an ex vivo preliminary investigation. In silico analysis of Rv1987 protein predicted it as surface localized, secretory, single helix, antigenic, non-allergenic, and non-homologous to the host protein. Immunoinformatics analysis of Rv1987 by CD4 + and CD8 + T-cells via MHC-I and MHC-II binding affinity and presence of B-cell epitope predicted its immunogenicity. The docked complex analysis of the 3D model structure of the protein with immune cell receptor TLR-4 revealed the protein's capability for potential interaction. Furthermore, the target protein-encoded gene Rv1987 was cloned, over-expressed, purified, and analyzed by mass spectrometry (MS) to report the target peptides. The qRT-PCR gene expression analysis shows that it is capable of activating macrophages and significantly increasing the production of a number of key cytokines (TNF-α, IL-1ß, and IL-10). Our in-silico analysis and ex vivo preliminary investigations revealed the immunogenic potential of the target protein. These findings suggest that the Rv1987 be undertaken as a potent subunit vaccine antigen and that further animal model immuno-modulation studies would boost the novel TB vaccine discovery and/or BCG vaccine supplement pipeline.

4.
Comput Biol Med ; 151(Pt A): 106285, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36395593

RESUMO

Cellular therapy has emerged as a key tool in the treatment of hematological malignancies. An advanced cell therapy known as chimeric antigen receptor T cell therapy (CAR T-cell therapy) has been approved by the United States Food and Drug Administration (FDA) as KYMRIAH by Novartis and YESCARTA by Gilead/Kite pharma in the year 2017. A chimeric receptor is composed of an extracellular antigen recognition site along with some co-stimulating and signalling domains. On the whole, it turns out to be one of the most potent receptors on T cells targeting a specific type of cancer cell based on its antigenic marker. CD19 CAR T-cell therapy is the first clinically approved therapy for lymphoma with remarkable results in complete remission of B cell lymphoblastic leukemia up to 90%. The high rate of effectiveness of the CAR T-cell therapy against B-ALL justifies the investigation and application of this therapy for fatal diseases like all types of hematological malignancies. The most critical aspect of chimeric receptor therapy is designing and building an artificial receptor that is specific to a given type of cancer. For this reason, the in silico technique is an appropriate model to investigate the integrity and effectiveness of the engineered chimeric receptor prior to commencing in vitro experiments followed by clinical trials. This computerized experimental study aids in predicting the molecular mechanism of chimeric protein and how it interacts with both ligands. We have anticipated various features of the chimeric protein in terms of qualitative analysis (structure, protein modelling, physiological properties) and functional analysis (antigenicity, allergenicity, its receptor-ligand binding ability, involving signalling pathways). Furthermore, the reliability and validation of the binding mode of the chimeric protein against receptors were performed through a complex molecular dynamics simulation for a 100 ns timeframe in an aqueous environment. The obtained simulation study showed that CD30 was a better approachable marker as compared to CD20 due to its better binding energy score and also binding conformations stability.


Assuntos
Neoplasias Hematológicas , Receptores de Antígenos Quiméricos , Estados Unidos , Humanos , Imunoterapia Adotiva , Reprodutibilidade dos Testes , Neoplasias Hematológicas/terapia , Simulação de Dinâmica Molecular , Terapia Baseada em Transplante de Células e Tecidos , Proteínas Recombinantes de Fusão
5.
J Cancer Res Clin Oncol ; 148(12): 3521-3535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35962813

RESUMO

PURPOSE: Inhibition of Poly (ADP-ribose) Polymerases (PARP) results in the blocking of DNA repair cascades that eventually leads to apoptosis and cancer cell death. PARP inhibitors (PARPi) exhibit their actions either by inhibiting PARP-induced PARylation and/or by trapping PARP at the DNA damage site. But, the mechanism of PARPi-mediated induction of cellular toxicity via PARP-trapping is largely unknown. METHODS: The cellular toxicity of PARPi [Talazoparib (BMN) and/or Olaparib (Ola)] was investigated in oral cancer cells and the underlying mechanism was studied by using in vitro, in silico, and in vivo preclinical model systems. RESULTS: The experimental data suggested that induction of DNA damage is imperative for the optimal effectiveness of PARPi. Curcumin (Cur) exhibited maximum DNA damaging capacity in comparison to Resveratrol and 5-Flurouracil. Combination of BMN + Ola induced cell death in Cur pre-treated cells at much lower concentrations than their individual treatments. BMN + Ola treatment deregulated the BER cascade, potentiated PARP-trapping, caused cell cycle arrest and apoptosis in Cur pre-treated cells in a much more effective manner than their individual treatments. In silico data indicated the involvement of different amino acid residues which might play important roles in enhancing the BMN + Ola-mediated PARP-trapping. Moreover, in vivo mice xenograft data also suggested the BMN + Ola-mediated enhancement of apoptotic potentiality of Cur. CONCLUSION: Thus, induction of DNA damage was found to be essential for optimal functioning of PARPi and BMN + Ola combination treatment enhanced the apoptotic potentiality of Cur in cancer cells by enhancing the PARP-trapping activity via modulation of BER cascade.


Assuntos
Curcumina , Neoplasias Bucais , Humanos , Animais , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Curcumina/farmacologia , Resveratrol/farmacologia , Ribose/farmacologia , Linhagem Celular Tumoral , Apoptose , Poli(ADP-Ribose) Polimerases , Neoplasias Bucais/tratamento farmacológico , DNA , Aminoácidos/farmacologia , Difosfato de Adenosina/farmacologia
6.
J Parasit Dis ; 46(3): 923-939, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35755159

RESUMO

Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0-24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium's unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.

7.
J Mol Model ; 28(6): 171, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624324

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is responsible for the highest global health problem, with the deaths of millions of people. With prevalence of multiple drug resistance (MDR) strains and extended therapeutic times, it is important to discover small molecule inhibitors against novel hypothetical proteins of the pathogen. In this study, a virtual screening protocol was carried out against MtbH37Rv hypothetical protein RipD (Rv1566c) for the identification of potential small molecule inhibitors. The 3D model of the protein structure binding site was used for virtual screening (VS) of inhibitors from the Pathogen Box, followed by its validation through a molecular docking study. The stability of the protein-ligand complex was assessed using a 150 ns molecular dynamics simulation. MM-PBSA and MM-GBSA are the two approaches that were used to perform the trajectory analysis and determine the binding free energies, respectively. The ligand binding was observed to be stable across the entire time frame with an approximate binding free energy of -22.9916 kcal/mol. The drug-likeness of the inhibitors along with a potential anti-tuberculosis compound was validated by ADMET prediction software. Furthermore, a CFU inhibition assay was used to validate the best hit compound's in vitro inhibitory efficacy against a non-pathogenic Mycobacterium smegmatis MC2155 under low nutrient culture conditions. The study reported that the compound proposed in our study (Pathogen Box ID: MMV687700) will be useful for the identification of potential inhibitors against Mtb in future.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
8.
J Biochem ; 171(6): 673-693, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35325168

RESUMO

Gram-negative intracellular pathogen Vibrio parahaemolyticus manifests its infection through a series of effector proteins released into the host via the type III secretion system. Most of these effector proteins alter signalling pathways of the host to facilitate survival and proliferation of bacteria inside host cells. Here, we report V. parahaemolyticus (serotype O3:K6) infection-induced histone deacetylation in host intestinal epithelial cells, particularly deacetylation of H3K9, H3K56, H3K18 and H4K16 residues. We found a putative NAD+-dependent deacetylase, vp1524 (vpCobB) of V. parahaemolyticus, was overexpressed during infection. Biochemical assays revealed that Vp1524 is a functional NAD+-dependent Sir2 family deacetylase in vitro, which was capable of deacetylating acetylated histones. Furthermore, we observed that vp1524 is expressed and localized to the nuclear periphery of the host cells during infection. Consequently, Vp1524 translocated to nuclear compartments of transfected cells, deacetylated histones, specifically causing deacetylation of those residues (K56, K16, K18) associated with V. parahaemolyticus infection. This infection induced deacetylation resulted in transcriptional repression of several host genes involved in epigenetic regulation, immune response, autophagy etc. Thus, our study shows that a V. parahaemolyticus lysine deacetylase Vp1524 is secreted inside the host cells during infection, modulating host gene expression through histone deacetylation.


Assuntos
Histona Desacetilases do Grupo III/metabolismo , Vibrio parahaemolyticus , Epigênese Genética , Histonas/metabolismo , Imunidade , NAD/genética , NAD/metabolismo , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
9.
J Biomol Struct Dyn ; 39(15): 5461-5470, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32633680

RESUMO

Calcium Dependent Protein Kinases are found in the Apicomplexan, algae, and plants; however, they are not reported in vertebrates and are regarded as excellent drug targets for pharmaceutical interventions. Calcium Dependent Protein Kinases of Cryptosporidium are probably involved in the regulation of invasion and egress process during the infection of the host cells. The previous study reported that after the Calcium Dependent Protein Kinase 1 gene, Calcium Dependent Protein Kinase 6 of Cryptosporidium parvum is expressed in all stages of the parasite (merozoites/schizonts as well as sexual stages) at a comparable level and makes it as a valid drug target. In this study, an attempt is made to address the similarity in sequences and phylogenetic study of Calcium Dependent Protein Kinase 6 (CDPK6) among Calcium Dependent Protein Kinases of Apicomplexans. Further, the three-dimensional structure determination of CDPK6 of C. parvum was performed through a molecular modeling approach followed by virtual screening of small-molecule inhibitors from different datasets. The best inhibitor from Tres Cantos Antimalarial Set with ID 11730 reported a binding affinity of -8.2 kcal/mol against CDPK6 of C. parvum. Furthermore, the reliability of the binding mode of the inhibitor is validated through a complex molecular dynamics simulation study for a time interval of 100 ns. The simulation study advocates that the inhibitor Tres Cantos Antimalarial Set_11730 formed a stable interaction with the predicted active site residues and can be considered for industrial pharmaceutical research in future.Communicated by Ramaswamy H. Sarma.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Cálcio , Criptosporidiose/tratamento farmacológico , Cryptosporidium/metabolismo , Cryptosporidium parvum/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Filogenia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Reprodutibilidade dos Testes
10.
Immunobiology ; 224(6): 747-757, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31522782

RESUMO

An immunoinformatics-based approach is explored for potential multi-subunit vaccine candidates against Cryptosporidium parvum. We performed protein structure based systematic methodology for the development of a proficient multi-subunit vaccine candidate against C. parvum based on their probability of antigenicity, allergenicity and transmembrane helices as the screening criteria. The best-screened epitopes like B-cell epitopes (BCL), Helper T-lymphocytes (HTL) and cytotoxic T- lymphocytes (CTL) were joined by using the appropriate linkers to intensify and develop the presentation and processing of the antigenic molecules. Modeller software was used to generate the best 3D model of the subunit protein. RAMPAGE and other web servers were employed for the validation of the modeled protein. Furthermore, the predicted modeled structure was docked with the two known receptors like TLR2 and TLR4 through ClusPro web server. Based on the docking score, the multi-subunit vaccine docked with TLR2 was subjected to energy minimization by molecular dynamics (MD) simulation to examine their stability within a solvent system. From the simulation study, we found that the residue Glu-107 of subunit vaccine formed a hydrogen bond interaction with Arg-299 of the TLR2 receptor throughout the time frame of the MD simulation. The overall results showed that the multi-subunit vaccine could be an efficient vaccine candidate against C. parvum.


Assuntos
Antígenos de Protozoários/administração & dosagem , Criptosporidiose/prevenção & controle , Cryptosporidium parvum/imunologia , Proteínas de Protozoários/administração & dosagem , Vacinas Protozoárias/administração & dosagem , Receptor 2 Toll-Like/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Antígenos de Protozoários/imunologia , Biologia Computacional , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Modelos Moleculares , Proteínas de Protozoários/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Receptor 4 Toll-Like/imunologia
11.
Comput Biol Chem ; 77: 44-51, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30240985

RESUMO

Cryptosporidium parvum is a protozoan parasite which causes waterborne diseases known as Cryptosporidiosis. It is an acute enteric diarrheal disease being severe in the case of immunocompromised individuals and children. C. parvum mainly depends on the glycolysis process for energy production and LDH (Lactate Dehydrogenase) is a key controller of this process. In this study from different in-silico approaches such as structure-based, ligand-based and de novo drug design; a total of 40 compounds were selected for docking studies against LDH. The study reported a compound CHEMBL1784973 from Pathogen Box as the best inhibitor in terms of docking score and pharmacophoric features. Furthermore, the binding mode of the best-reported inhibitor was validated through molecular dynamics simulation for a time interval of 70 ns in water environment. The findings resulted in the stable conformation of the inhibitor in the active site of the protein. This study will be helpful for experimental validation.


Assuntos
Cryptosporidium parvum/enzimologia , L-Lactato Desidrogenase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Bases de Dados Factuais , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , L-Lactato Desidrogenase/metabolismo , Ligantes , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA